Tinnitus is usually described as a ringing in the ears, but it can also sound like clicking, hissing, roaring, or buzzing. Tinnitus involves perceiving sound when no external noise is present. The sound can be very soft or very loud, and high-pitched or low-pitched. Some people hear it in one ear and others hear it in both. People with severe tinnitus may have problems hearing, working, or sleeping.
There are eight main causes of tinnitus that when avoided or removed from your life can help improve your tinnitus dramatically. Ironically, these 8 causes do not affect everyone in the same way. Some people will have no reaction to some of these tinnitus causes, while others will have a severe reaction. There’s no clear answer to why this is, but the condition is a growing one with one in five individuals who reach the age of fifty-five suffering from tinnitus.

Exposure to loud noise: Loud noise exposure is a very common cause of tinnitus today, and it often damages hearing as well. Unfortunately, many people are unconcerned about the harmful effects of excessively loud noise from firearms, high intensity music, or other sources. Twenty-six million American adults have suffered noise-induced hearing loss, according to the NIDCD.

As an initial test of our treatment, we first conducted a small pilot study to see if there were measurable benefits within 3 to 6 months of using this therapy. While we did not inform participants of whether they would receive a treatment or unaltered music, every participant in fact received a treatment. Participants reported a drop in scores on the Tinnitus Handicap Inventory (THI) within 3 months of using their personalized sound therapy for about 2 hours a day. THI is a psychometrically robust and validated questionnaire that assesses the impact of tinnitus on daily living and the degree of distress suffered by the tinnitus patient. Furthermore, we saw increased benefits after 6 months of treatment use (Figure 1). This data suggested that our treatment may be engaging brain plasticity in a positive manner, thereby gradually reducing tinnitus over time. Armed with this information, we designed a more rigorous trial that is very uncommon among research in tinnitus therapies.
Tinnitus is a non-curable, invisible and debilitating hearing disorder that can take on many different forms – ringing, hissing, buzzing, and even the sound of crickets. Almost everyone has experienced brief periods of mild tinnitus, but for many, this sound can be permanent. Over 360,000 Canadians report suffering from chronic tinnitus, and almost half of those are severely affected.1 In the US, over 16 million tinnitus sufferers seek treatment every year.2 Tinnitus is the number one disability claim for US veterans3 and has also become the top disability claim for current and former male RCMP members.4 This persistent sound can have a serious impact on quality of life; leading to sleep deprivation, depression, anxiety, and even suicide. What adds to the challenges faced by tinnitus sufferers is a lack of knowledge, support and options available to them. Unfortunately, there are currently too few health care professionals providing services to tinnitus sufferers who are seeking ways to manage their tinnitus. Unfortunately, the phrase “learn to live with it” is still heard far too often by those that seek help for tinnitus.
FACT: Some companies will try to point you to a miraculous tinnitus cure where a few pills will stop all signs of tinnitus. While much research has been done around the effects of medication and vitamin supplements on tinnitus, there is currently no proven tinnitus cure.  Only tinnitus management devices and sound therapy have been proven to decrease the effects of tinnitus.
Repeated loud noise exposure can be a cause of tinnitus as well as hearing loss. Loud music may cause short term symptoms, but repeated occupational exposure (for example, musicians, factory and construction workers) requires less intense sound levels to cause potential hearing damage leading to tinnitus. Minimizing sound exposure, therefore, decreases the risk of developing tinnitus. Sound protection equipment, like acoustic ear-muffs, may be appropriate at work and at home when exposed to loud noises.
Lidocaine, a medication used for the treatment of certain types of abnormal heart rhythms, has been shown to relieve tinnitus for some people, but it must be given intravenously or into the middle ear to be effective. However, the benefits of lidocaine are almost always outweighed by the risks of the drug and it is therefore not recommended and not used for tinnitus.
In the advance online edition of Nature on January 12, 2011, the researchers reported that the number of neurons tuned to the high frequency had jumped by 79% compared to control rats. The scientist then tested 2 different tones in a second group of rats but stimulated the vagus nerve only for the higher one. The neurons tuned to the higher tone increased by 70%, while those tuned to the lower one decreased in number. This showed that the tone alone wasn’t enough to initiate the change; it had to be accompanied by VNS.

Shelly-Anne Li is the VP of clinical research and operations at Sound Options Tinnitus Treatments Inc. As a research methodology consultant for various projects, she brings expertise in health research methods, as well as experience from conducting multi-site randomized controlled trials, mixed methods studies and qualitative research. Shelly-Anne Li is currently a PhD candidate at University of Toronto, and obtained her MSc (health sciences) from McMaster University.
There's no known cure for tinnitus. Current treatments generally involve masking the sound or learning to ignore it. A research team led by Dr. Michael Kilgard at the University of Texas at Dallas and Dr. Navzer Engineer at MicroTransponder, Inc. set out to see if they could develop a way to reverse tinnitus by essentially resetting the brain's auditory system. Their work was funded in part by NIH’s National Institute on Deafness and Other Communication Disorders (NIDCD).
Other therapies. Other treatments that have been studied for tinnitus include transcutaneous electrical stimulation of parts of the inner ear by way of electrodes placed on the skin or acupuncture needles, and stimulation of the brain using a powerful magnetic field (a technique called repetitive transcranial magnetic stimulation, or rTMS). Transcutaneous electrical stimulation has been shown to be no more effective than a placebo. In two small trials, rTMS compared with a sham procedure helped improve the perception of tinnitus in a few patients.
Microvascular compression may sometimes cause tinnitus. According to Levine (2006) the quality is similar to a "typewriter", and it is fully suppressed by carbamazepine. It seems to us that response to carbamazepine is not a reliable indicator of microvascular compression as this drug stabilizes nerves and lowers serum sodium. Nevertheless, this quality of tinnitus probably justifies a trial of oxcarbamazine (a less toxic version of carbamazepine).
Psychological research has looked at the tinnitus distress reaction (TDR) to account for differences in tinnitus severity.[18][21][22][23] These findings suggest that at the initial perception of tinnitus, conditioning links tinnitus with negative emotions, such as fear and anxiety from unpleasant stimuli at the time. This enhances activity in the limbic system and autonomic nervous system, thus increasing tinnitus awareness and annoyance.[24]
The researchers point out that up to one in five adults will develop tinnitus, a distressing disorder in which people hear buzzing, ringing and other sounds from no external source. Tinnitus can occur in one or both ears, and is usually continuous but can fluctuate. A randomised controlled trial is the best way of assessing the effectiveness of an intervention.
There are, however, excellent tools to help patients manage their condition; treatments that reduce the perceived intensity, omnipresence, and burden of tinnitus. These currently available treatments are not “cures” — they neither repair the underlying causes of tinnitus, nor eliminate the tinnitus signal in the brain. Instead, they address the attentional, emotional, and cognitive impact of tinnitus. They help patients live better, more fulfilling, and more productive lives, even if the perception of tinnitus remains.
There are two types of tinnitus: subjective tinnitus and objective tinnitus.[3] Tinnitus is usually subjective, meaning that there is no sound detectable by other means.[3] Subjective tinnitus has also been called "tinnitus aurium", "non-auditory" or "non-vibratory" tinnitus. In very rare cases tinnitus can be heard by someone else using a stethoscope, and in less rare – but still uncommon – cases it can be measured as a spontaneous otoacoustic emission (SOAE) in the ear canal. In such cases it is objective tinnitus,[3] also called "pseudo-tinnitus" or "vibratory" tinnitus.
A common cause of tinnitus is inner ear hair cell damage. Tiny, delicate hairs in your inner ear move in relation to the pressure of sound waves. This triggers cells to release an electrical signal through a nerve from your ear (auditory nerve) to your brain. Your brain interprets these signals as sound. If the hairs inside your inner ear are bent or broken, they can "leak" random electrical impulses to your brain, causing tinnitus.
×