Tinnitus is commonly accompanied by hearing loss, and roughly 90% of persons with chronic tinnitus have some form of hearing loss (Davis and Rafaie, 2000; Lockwood et al, 2002). On the other hand, only about 30-40% of persons with hearing loss develop tinnitus. According to Park and Moon (2004), hearing impairment roughly doubles the odds of having tinnitus, and triples the odds of having annoying tinnitus.
When a medication is ototoxic, it has a toxic effect on the ear or its nerve supply. In damaging the ear, these drugs can cause side effects like tinnitus, hearing loss, or a balance disorder. Depending on the medication and dosage, the effects of ototoxic medications can be temporary or permanent. More than 200 prescription and over-the-counter medicines are known to be ototoxic, including the following:
Generally, following the initial evaluation, individuals suspected of rhythmic tinnitus will undergo some form of specialized medical imaging. Individuals may undergo high resolution computed tomography (HRCT) or magnetic resonance angiography (MRA) to evaluate blood vessel abnormalities such as a vascular malformation that may be the cause of tinnitus. An HRCT scan can also be used to evaluate the temporal bone for sinus wall abnormalities and superior semicircular canal dehiscence. HRCT uses a narrow x-ray beam and advanced computer analysis to create highly detailed images of structures within the body such as blood vessels. An MRA is done with the same equipment use for magnetic resonance imaging (MRI). An MRI uses a magnetic field and radio waves to produce cross-sectional images of particular structures or tissues within the body. An MRA provides detailed information about blood vessels. In some cases, before the scan, an intravenous line is inserted into a vein to release a special dye (contrast). This contrast highlights the blood vessels, thereby enhancing the results of the scan.

It is very well accepted that tinnitus often is "centralized" -- while it is usually initiated with an inner ear event, persistent tinnitus is associated with changes in central auditory processing (Adjamian et al, 2009). Sometimes this idea is used to put forth a "therapeutic nihilism" -- suggesting that fixing the "cause" -- i.e. inner ear disorder -- will not make the tinnitus go away.   This to us seems overly simplistic -- while it is clear that the central nervous system participates in perception of sounds, and thus must be a participant in the "tinnitus" process, we think that it is implausible that in most cases that there is not an underlying "driver" for persistent tinnitus.
It is important to follow the doctor's directions in obtaining further evaluations and tests for your tinnitus. You may need an appointment with an ear, nose, and throat specialist (otolaryngologist) or an audiologist for further testing. It is important to follow up on these recommendations when they are made to confirm that your tinnitus is not caused by another illness.
No matter what the cause, the condition interrupts the transmission of sound from the ear to the brain. Some of the neural circuits no longer receive signals. Strangely, this does not cause hearing loss. Instead, when neural circuits don’t receive stimulation, they react by chattering together, alone at first and then synchronous with each other. Once the nerve cells become hyperactive and occur at the same time, they simulate a tone the brain “hears” as tinnitus. Analogous to a piano, the broken “keys” create a permanent tone without a pianist playing the keys.
The majority of cases of tinnitus are subjective. Objective tinnitus is far less common. However, a diagnosis of objective tinnitus is tied to how hard and well the objective (outside) listener tries to hear the sound in question. Because of this problem, some clinicians now simply refer to tinnitus as either rhythmic or non-rhythmic. Generally, rhythmic tinnitus correlates with objective tinnitus and non-rhythmic tinnitus correlates with subjective tinnitus. Specific forms of tinnitus such as pulsatile tinnitus and muscular tinnitus, which are forms of rhythmic tinnitus, are relatively rare. Pulsatile tinnitus may also be known as pulse-synchronous tinnitus. Properly identifying and distinguishing these less common forms of tinnitus is important because the underlying cause of pulsatile or muscular tinnitus can often be identified and treated.
At Sound Relief Hearing Center, we utilize a variety of evidence-based tinnitus treatment options. Most audiologists only offer one solution, hearing aids, which are ineffective in many cases. To treat each unique case of tinnitus, we utilize a variety of innovative technologies and therapies, including Tinnitus Retraining Therapy (TRT). For more information about your tinnitus treatment options, visit our page Tinnitus Treatment. If you’re worried that you won’t ever escape the ringing in your ears, check out our page Tinnitus Success Stories. Finally, follow our Tips from Tinnitus Experts to avoid exacerbating the problem.
In this exercise you are going to imagine yourself in another place – as if you’re actually there. What it looks like, the smells, the sounds… You can make this exercise as long as you want to and you can take your time to visualise a number of different places, such as a forest, a garden or a beach. Here is a short example of how you can do this (remember not to rush through it).
Ringing-in-the-ears or a fullness-of-the-head sensation are the most common symptoms of tinnitus. While ringing is the most common experience, the noise can also sound like a buzzing, hissing or whizzing sound. It can range from a low pitch to a high pitch and may be soft or loud at times. For some, tinnitus seems to get louder at night, just before sleep when no other sounds are competing with it. Tinnitus can remain constant or come and go intermittently. In severe cases, the ringing in the ears is loud enough to interfere with work or daily activity, whereas those with mild tinnitus can experience soft ringing that is no more than a minor annoyance.
×