A poor diet, sedentary lifestyle, lack of sleep and chronic stress are all capable of reducing immunity and making you susceptible to nerve damage, allergies and ear problems. If you frequently experience seasonal or food allergies that affect your ears, ear infections, swelling and other problems related to damage of the vestibular system, consider changing your diet, exercise routine and ways of dealing with stress, which in turn will aid your tinnitus treatment. Try natural stress relievers like exercising, yoga, meditation, taking warm baths, using essential oils and spending more time outdoors, and eat an anti-inflammatory diet.
The researchers next tested whether tinnitus could be reversed in noise-exposed rats. The animals received VNS paired with various tones other than the tinnitus frequency 300 times a day for about 3 weeks. Rats that received the treatment showed behavioral changes indicating that the ringing had stopped. Neural responses in the brain's auditory cortex returned to their normal levels as well, indicating that the tinnitus had disappeared.
Most cases of tinnitus are unfortunately thought to be difficult to treat, and sometimes severe tinnitus cannot be treated at all when permanent and irreversible damage to the ears or nerves has occurred. That being said, many patients find natural tinnitus treatment methods and coping strategies to be very helpful in allowing them to adjust to the changes that tinnitus brings. Here are six of those tinnitus treatment options:
CBT could potentially help people with tinnitus deal with fears that their tinnitus might be caused by brain damage or might lead to deafness. During CBT, they might learn that the condition is common and that it is not associated with brain damage or deafness. They might also be exposed to the sound in a safe environment, so that it has less of an impact on their daily life. CBT also involves techniques such as applied relaxation and mindfulness training.
Prolonged exposure to loud sounds is the most common cause of tinnitus. Up to 90% of people with tinnitus have some level of noise-induced hearing loss. The noise causes permanent damage to the sound-sensitive cells of the cochlea, a spiral-shaped organ in the inner ear. Carpenters, pilots, rock musicians, street-repair workers, and landscapers are among those whose jobs put them at risk, as are people who work with chain saws, guns, or other loud devices or who repeatedly listen to loud music. A single exposure to a sudden extremely loud noise can also cause tinnitus.
Tinnitus Retraining Therapy. Tinnitus Retraining Therapy (TRT) combines a wearable device that is individually programmed to mask the specific tonal frequency of that person’s tinnitus, with psychological therapy that teaches a patient to ignore the sounds his tinnitus is creating. I consider it the best of all of the above noise suppression techniques, as it is individually tailored for each person and involves support from a trained psychological therapist. It is also the most expensive and time consuming, but in my medical opinion, the most beneficial of all the noise suppression techniques listed above.
Some instances of tinnitus are caused by infections or blockages in the ear, and the tinnitus can disappear once the underlying cause is treated. Frequently, however, tinnitus continues after the underlying condition is treated. In such a case, other therapies -- both conventional and alternative -- may bring significant relief by either decreasing or covering up the unwanted sound.
The patients were assessed at the start of the study for their hearing ability and the severity of their tinnitus. The researchers assessed the degree of severity using established questionnaires, which looked at health-related quality of life, the psychological distress associated with tinnitus and how far it impaired their functioning. Using this information, researchers divided participants into four groups ranked on the severity of their condition.
Ear canal obstructions, infections, injuries or surgeries. This can include ossicle dislocation within the ear that affects hearing or recurring ear infections (like swimmer’s ear) either in the outside or inside of the ear canal (otitis media or otitis externa). Other ear disorders tied to tinnitus include otosclerosis (causes changes to the bones inside the ears), tympanic membrane perforation or labrynthitis (chronic infections or viruses that attack tissue in the ears).
These tests are usually performed instead of a traditional catheter angiography, which is more invasive and, while generally very safe, carries greater risk of complications. Angiography is an imaging technique that involves injecting dye into a small tube called a catheter that has been inserted into a blood vessel. An x-ray is then performed to assess the health of the vessels as well as the rate of blood flow.
It is also very common for jaw opening to change the loudness or frequency of tinnitus. This is likely a variant of somatic modulation of tinnitus (see above). The sensory input from the jaw evidently interacts with hearing pathways. The muscles that open the jaw are innervated by the same nerve, the motor branch of 5, that controls the tensor tympani in the ear. In other words, changing tension in the jaw may also change muscle tension in the ear.
Biofeedback and stress management. Tinnitus is stressful, and stress can worsen tinnitus. Biofeedback is a relaxation technique that helps control stress by changing bodily responses. Electrodes attached to the skin feed information about physiological processes such as pulse, skin temperature, and muscle tension into a computer, which displays the output on a monitor. Patients learn how to alter these processes and reduce the body's stress response by changing their thoughts and feelings. Mindfulness-based stress reduction techniques may also help.
Subjective tinnitus is the most common type and accounts for 95 percent of cases. Only you can hear it and it’s usually caused by exposure to excessive noise. It can appear suddenly and may last three months (acute) to 12 months (subacute), or longer. Subjective tinnitus is often accompanied by hearing loss due to hair cell nerve damage. The severity of symptoms varies from patient to patient, and largely depends on your reaction to the noise.
As an initial test of our treatment, we first conducted a small pilot study to see if there were measurable benefits within 3 to 6 months of using this therapy. While we did not inform participants of whether they would receive a treatment or unaltered music, every participant in fact received a treatment. Participants reported a drop in scores on the Tinnitus Handicap Inventory (THI) within 3 months of using their personalized sound therapy for about 2 hours a day. THI is a psychometrically robust and validated questionnaire that assesses the impact of tinnitus on daily living and the degree of distress suffered by the tinnitus patient. Furthermore, we saw increased benefits after 6 months of treatment use (Figure 1). This data suggested that our treatment may be engaging brain plasticity in a positive manner, thereby gradually reducing tinnitus over time. Armed with this information, we designed a more rigorous trial that is very uncommon among research in tinnitus therapies.
Sound-masking devices provide a pleasant or benign external noise that partially drowns out the internal sound of tinnitus. The traditional sound-masking device is a tabletop sound machine, but there are also small electronic devices that fit in the ear. These devices can play white noise, pink noise, nature noises, music, or other ambient sounds. Most people prefer a level of external sound that is just slightly louder than their tinnitus, but others prefer a masking sound that completely drowns out the ringing.
An ultrasound is another test that may be used to aid in the diagnosis of tinnitus. An ultrasound uses reflected high-frequency sound waves and their echoes to create images of structures within the body. An ultrasound can reveal how blood flows within vessels, but is only useful for accessible vessels. It is not helpful for blood vessels within the skull.
The researchers paired electrical stimulation of the vagus nerve — a large nerve that runs from the head to the abdomen — with the playing of a tone. Vagus nerve stimulation (VNS) is known to release chemicals that encourage changes in the brain. This technique, the scientists reasoned, might induce brain cells (neurons) to tune to frequencies other than the tinnitus one. For 20 days, 300 times a day, they played a high-pitched tone to 8 rats during VNS.
Between 2007 and 2011, the researchers recruited 492 Dutch adults who had been diagnosed with tinnitus. The patients had to fulfil several criteria, including having no underlying disease that was causing their tinnitus, no other health issues that precluded their participation, and to have received no treatment for their tinnitus in the five previous years. Some 66% of adults originally screened for the study participated after screening.
Patulous Eustachian tubes can be associated with tinnitus. The Eustachian tube is a small canal that connects the middle ear to the back of the nose and upper throat. The Eustachian tube normally remains closed. In individuals with a patulous Eustachian tube, the tube is abnormally open. Consequently, talking, chewing, swallowing and other similar actions can cause vibrations directly onto the ear drum. For example, affected individuals may hear blowing sounds that are synchronized with breathing.
What does he mean by “ends up in the brain”? Essentially, something that causes even temporary hearing damage — such as exposure to very loud noise or a blow to the head — can change activity patterns in the brain in ways that cause the ringing. Even though some damage or problem in the ear triggered tinnitus to begin with, you continue to hear the sound you do because of a signal from the brain.
Information on this website is provided for informational purposes only and is not intended as a substitute for the advice provided by your physician or other healthcare professional. You should not use the information on this website for diagnosing or treating a health problem or disease, or prescribing any medication or other treatment. Any third party offering or advertising on this website does not constitute an endorsement by Andrew Weil, M.D. or Healthy Lifestyle Brands.
The degree of loudness or annoyance caused by tinnitus varies greatly from one individual to another. Loudness and annoyance do not always covary. An individual with loud tinnitus may not be troubled, while an individual with soft tinnitus may be debilitated. Most individuals with subjective tinnitus have hearing loss that shows up in a standard clinical audiogram. Tinnitus can sometimes worsen or sometimes improve over time.
^ Jump up to: a b Schecklmann, Martin; Vielsmeier, Veronika; Steffens, Thomas; Landgrebe, Michael; Langguth, Berthold; Kleinjung, Tobias; Andersson, Gerhard (18 April 2012). "Relationship between Audiometric Slope and Tinnitus Pitch in Tinnitus Patients: Insights into the Mechanisms of Tinnitus Generation". PLOS One. 7 (4): e34878. Bibcode:2012PLoSO...734878S. doi:10.1371/journal.pone.0034878. PMC 3329543. PMID 22529949.
This tinnitus treatment we developed makes use of software that customizes a music-based therapy for each individual tinnitus sufferer. The software achieves this by incorporating a computational model of the “tinnitus brain.” This model captures changes in the auditory brain which may be causing the tinnitus.5,7 We do this by taking into account the individual’s audiogram and a pitch match of their tinnitus, which generates a tinnitus profile unique to him or her. The software then uses the model to predict how each music track can be altered spectrally to reduce tinnitus for that specific tinnitus profile. Delivering the treatment using headphones that could produce high frequencies (above 10–12 kHz) was an integral part of treatment effectiveness. With such headphones, the treatment could work by taking advantage of the same kind of brain plasticity that may contribute to the person's tinnitus in the first place without being limited by a lack of high-frequency sounds.8 By incorporating the latest tinnitus research into our software, we developed a treatment approach that provides greater promise in treating tinnitus than existing treatments with a one-size-fits-all approach.
A diagnosis of tinnitus is based upon identification of characteristic symptoms, a detailed patient history, a thorough clinical evaluation and complete audiologic testing. These steps will help to differentiate rhythmic tinnitus from non-rhythmic tinnitus. It cannot be overemphasized that tinnitus is a symptom of another underlying condition and not a diagnosis in and of itself. Because of the high number of underlying causes of tinnitus, a variety of specialized tests to detect the specific cause may be necessary. Attempting to identify the underlying cause of tinnitus is the first step in evaluating a person with tinnitus.
We occasionally recommend neuropsychological testing using a simple screening questionnaire -- depression, anxiety, and OCD (obsessive compulsive disorder) are common in persons with tinnitus. This is not surprising considering how disturbing tinnitus may be to ones life (Holmes and Padgham, 2009). Persons with OCD tend to "obsess" about tinnitus. Treatment of these psychological conditions may be extremely helpful.
TRT depends upon the natural ability of the brain to "habituate" a signal, to filter it out on a subconscious level so that it does not reach conscious perception. Habituation requires no conscious effort. People frequently habituate many auditory sounds -- air conditioners, computer fans, refrigerators, and gentle rain, among them. What they have in common is that they have no importance, so they are not perceived as ''loud.'' Thus, the brain can screen them out.