The researchers paired electrical stimulation of the vagus nerve — a large nerve that runs from the head to the abdomen — with the playing of a tone. Vagus nerve stimulation (VNS) is known to release chemicals that encourage changes in the brain. This technique, the scientists reasoned, might induce brain cells (neurons) to tune to frequencies other than the tinnitus one. For 20 days, 300 times a day, they played a high-pitched tone to 8 rats during VNS.

Merck & Co., Inc., Kenilworth, NJ, USA is a global healthcare leader working to help the world be well. From developing new therapies that treat and prevent disease to helping people in need, we are committed to improving health and well-being around the world. The Merck Manual was first published in 1899 as a service to the community. The legacy of this great resource continues as the Merck Manual in the US and Canada and the MSD Manual outside of North America. Learn more about our commitment to Global Medical Knowledge.
Muscle spasms: Tinnitus that is described as clicking may be due to abnormalities that cause the muscle in the roof of the mouth (palate) to go into spasm. This causes the Eustachian tube, which helps equalize pressure in the ears, to repeatedly open and close. Multiple sclerosis and other neurologic diseases that are associated with muscle spasms may also be a cause of tinnitus, as they may lead to spasms of certain muscles in the middle ear that can cause the repetitive clicking.

Tinnitus remains a symptom that affects the lives of millions of people. Research is directed not only at its treatment, but also at understanding why it occurs. Research by doctors at the University at Buffalo, The State University of New York, Dalhousie University (Canada), and Southeast China University have published research using electrophysiology and functional MRI to better understand what parts of the brain are involved in hearing and the production of tinnitus. Their research has found that much larger areas of the brain are involved with the process of hearing than previously believed, which may help direct future diagnostic and therapeutic options.


Although drugs cannot cure tinnitus, there are a few that will help suppress the symptoms you are experiencing. Tricyclic antidepressants, like amitriptyline and nortriptyline, are two of the most commonly prescribed medications. If you are experiencing severe tinnitus, one of these drugs may be used. However, it's important to know that these medications may come with side effects such as dry mouth, blurry vision and heart issues. Discuss any other conditions you have or medications you are currently taking with your physician. Niravam and Xanax can also be prescribed, but each of these medications can cause drowsiness and nausea, and they can be habit-forming.
Tinnitus (pronounced tih-NITE-us or TIN-ih-tus) is sound in the head with no external source. For many, it's a ringing sound, while for others, it's whistling, buzzing, chirping, hissing, humming, roaring, or even shrieking. The sound may seem to come from one ear or both, from inside the head, or from a distance. It may be constant or intermittent, steady or pulsating.

There seems to be a two-way-street relationship between tinnitus and sleep problems. The symptoms of tinnitus can interfere with sleeping well—and poor sleep can make tinnitus more aggravating and difficult to manage effectively. In the same study that found a majority of people with tinnitus had a sleep disorder, the scientists also found that the presence of sleep disorders made tinnitus more disruptive.

The exact biological process by which hearing loss is associated with tinnitus is still being investigated by researchers. However, we do know that the loss of certain sound frequencies leads to specific changes in how the brain processes sound. In short, as the brain receives less external stimuli around a specific frequency, it begins to adapt and change. Tinnitus may be the brain’s way of filling in the missing sound frequencies it no longer receives from the auditory system.
Unfortunately that means tinnitus is a very complicated condition that involves several systems of the body. The good news, though, is that as doctors and researchers have developed a better understanding of the mechanisms behind tinnitus, they’ve also been able to develop new and promising treatments that target the brain rather than the ear — and have more of a chance of actually reversing the problem.
Limit use of earplugs. Earplugs are important to use to protect your hearing when you’re likely to be exposed to loud noises. (Remember, exposure to loud sounds, and noise-induced hearing loss, are common causes of tinnitus, and may make tinnitus worse if you already have the condition.) But otherwise, people with tinnitus are advised not to wear earplugs, including for sleep. Earplugs reduce your ability to hear external noise and can make tinnitus more noticeable.

The results were calculated using a measure called “effect size”, which is a way of quantifying the size of the difference between the two groups. For the difference in quality of life scores between groups, the effect size was calculated to be 0.24. This can be interpreted as a “small” effect. In other words, treatment including CBT gave a small improvement in quality of life compared with usual care.


Everything you need to know about acoustic neuroma Acoustic neuroma is a benign tumor affecting nerves between the inner ear and the brain. It can lead to hearing loss, tinnitus, and loss of balance. This MNT Knowledge Center article explores the treatments, symptoms, and causes of acoustic neuroma, as well as how the condition may become more severe and complicate. Read now
The sound you hear is actually being generated by the part of your ear known as the cochlea. It’s a very complicated organ with sensory hairs, internal fluid and nerve receptors, that when damaged (or as it naturally degrades as you get older), can cause it to send incorrect input into your brain. In layman’s terms, because it’s no longer working as well as it used to, it thinks there’s a ringing sound in the area and tells your brain to generate that sound in your head. There are other symptoms of tinnitus, but this is the main one.
The physician may also request an OAE test (which is very sensitive to noise induced hearing damage), an ECochG (looking for Meniere's disease and hydrops, an MRI/MRA test (scan of the brain), a VEMP (looking for damage to other parts of the ear) and several blood tests (ANA, B12, FTA, ESR, SMA-24, HBA-IC, fasting glucose, TSH, anti-microsomal antibodies).
Microvascular compression may sometimes cause tinnitus. According to Levine (2006) the quality is similar to a "typewriter", and it is fully suppressed by carbamazepine. It seems to us that response to carbamazepine is not a reliable indicator of microvascular compression as this drug stabilizes nerves and lowers serum sodium. Nevertheless, this quality of tinnitus probably justifies a trial of oxcarbamazine (a less toxic version of carbamazepine).
The important thing to remember about tinnitus is that the brain’s response to these random electrical signals determines whether or not a person is annoyed by their tinnitus or not. Magnetoencephalography (MEG, for short) studies have been used to study tinnitus and the brain. MEG takes advantage of the fact that every time neurons send each other signals, their electric current creates a tiny magnetic field. MEG allows scientists to detect such changing patterns of activity in the brain 100 times per second. These studies indicated tinnitus affects the entire brain and helps with understanding why certain therapies are more effective than others.
Acoustic Neural Stimulation. This relatively new treatment has shown to be effective in reducing, and in some cases eliminating, symptoms in patients whose tinnitus just won’t go away or is very loud. The treatment utilizes a device small enough to fit into the palm of your hand that delivers a broadband acoustical signal embedded in special music you can listen to via headphones. The treatment eventually desensitizes you to the ringing in your ears by stimulating changes in the neural circuits in your brain.
Hair cells can be damaged by exposure to loud noise, which could lead to tinnitus. This can occur gradually as a result of exposure to noises over prolonged periods or may be caused by exposure to louder noises over a shorter period of time. If you are exposed to loud noises, you should always wear ear protection. Find out more about the subject on our How Loud Is Loud article and see if your job or lifestyle could be putting your ears at risk,
There seems to be a two-way-street relationship between tinnitus and sleep problems. The symptoms of tinnitus can interfere with sleeping well—and poor sleep can make tinnitus more aggravating and difficult to manage effectively. In the same study that found a majority of people with tinnitus had a sleep disorder, the scientists also found that the presence of sleep disorders made tinnitus more disruptive.
Millions of Americans experience tinnitus, often to a debilitating degree, making it one of the most common health conditions in the country. The U.S. Centers for Disease Control estimates that nearly 15% of the general public — over 50 million Americans — experience some form of tinnitus. Roughly 20 million people struggle with burdensome chronic tinnitus, while 2 million have extreme and debilitating cases.1
×