Loud noise exposure: Being exposed to occupational loud noise on a regular basis from heavy equipment, chain saws or firearms is a common cause of tinnitus. However, even if you don’t work in a noisy environment, you can still suffer the effects of noise exposure by listening to loud music through headphones, attending live music performances frequently and engaging in noisy hobbies.
Ringing in your ears, hissing, buzzing, roaring - tinnitus can take many forms. The bothersome and uncomfortable noise in your ear varies from one tinnitus sufferer to another. So does the impact of tinnitus on people's lives. Some get used to the never-ending noise in the ear with relative ease, while others are driven to despair. Many ask can tinnitus be cured? Is there a tinnitus remedy?

A large, 2014 study of almost 14,000 people found obstructive sleep apnea was linked to significantly higher rates of hearing impairment and hearing loss. Scientists think one reason for this is changes to blood flow to the ear that result in inflammation. (We know that sleep apnea causes changes to circulation and weakens blood flow to some areas of the body, including the brain.) A related factor? People with sleep apnea are at greater risk for high blood pressure, and high blood pressure can exacerbate hearing loss, according to research.
Tinnitus is a symptom, not a disease. Most cases are due to damage to the microscopic endings of the sensory nerve in the inner ear, commonly from exposure to loud noise (as from amplified music or gunfire). Other causes include allergy, high or low blood pressure, a tumor, diabetes, thyroid dysfunction, and head or neck injury. In addition, some drugs, including aspirin and other anti-inflammatories, antibiotics, sedatives, and antidepressants can also cause tinnitus. If so, changing drugs or lowering the dosage usually helps.
The similarities between chronic pain and tinnitus have led researchers to develop a mindfulness-based tinnitus stress reduction (MBTSR) program. The results of a pilot study, which were published in The Hearing Journal, found that participants of an eight-week MBTSR program experienced significantly altered perceptions of their tinnitus. This included a reduction in depression and anxiety.
FACT: Many people with tinnitus will also have a hearing loss. In fact, a recent French study showed that of 123 people with tinnitus surveyed only one did not have hearing loss.  The British Tinnitus Association estimates that 90 percent of people with tinnitus also have a hearing loss. Moreover, research says that those who don’t may have a “hidden hearing loss.”
Vitamin Supplements. Vitamin supplements, like Lipo-Flavonoid Plus, contain the vitamins that some studies have shown to be beneficial to inner ear health. These include Vitamin C, B-1, B-2, B-6, B-12, zinc, niacin and calcium. And while I am a proponent of vitamins, I advise my patients to take a regular OTC multivitamin that costs $15, versus Lipo-Flavonoid Plus, which has the same ingredients, but costs up to $90 for the same number of pills, just because it’s packaged and marketed to people that suffer from tinnitus.
Avoid a too-quiet bedroom. People with tinnitus may find it easier to sleep in a less quiet bedroom, and may benefit from white noise or other sleep-friendly sounds that help mask and minimize their tinnitus. To my patients who are looking to introduce soothing sounds to their sleep environment, I recommend the iHome Zenergy Sleep System, which combines relaxing sounds with aromatherapy and sleep-promoting light therapy.
White Noise Machines. These devices do a great job of simulating the sound of everything from ocean waves, to rain, to a thunder storm, to a crackling fire to an oscillating fan to just plain old static. The result is that your brain focuses on the sounds around you instead of the ringing in your head. You can even download apps on your iPhone that do the same thing so that you can always have a noise machine with you wherever you go. The constant background noise can not only bring back nostalgic feelings of joy, if you used to site around a crackling fire on holidays with your family, but also allow you to forget about your tinnitus.

Exposure to Loud Noise: Exposure to loud or excessive noise can damage or destroy hair cells (cilia) in the inner ear. Because the hair cells cannot be renewed or replaced, this can lead to permanent hearing loss and/or tinnitus. Continued exposure can worsen these conditions, so people who work in loud environments should always wear ear protection. This includes musicians, air traffic controllers, construction workers, military personnel, and first responders. In addition, consider lowering the volume on your iPod and wearing earplugs at loud concerts.

Persistent tinnitus may cause anxiety and depression.[14][15] Tinnitus annoyance is more strongly associated with psychological condition than loudness or frequency range.[16][17] Psychological problems such as depression, anxiety, sleep disturbances and concentration difficulties are common in those with strongly annoying tinnitus.[18][19] 45% of people with tinnitus have an anxiety disorder at some time in their life.[20]
Tinnitus affects males and females in equal numbers. It can affect individuals of any age, even children. Tinnitus, collectively, is a very common condition and estimated to affect approximately 10% of the general population. Rhythmic tinnitus occurs far less frequently than non-rhythmic tinnitus, accounting for approximately 1% of all cases of tinnitus and is considered relatively rare in the general population. The exact prevalence or incidence of rhythmic tinnitus is unknown. Rhythmic tinnitus due to pseudotumor and sinus wall anomalies is found most commonly in overweight women in their 3rd to 6th decade of life. The onset of tinnitus can be abrupt or develop slowly over time.

Tinnitus can arise anywhere along the auditory pathway, from the outer ear through the middle and inner ear to the brain's auditory cortex, where it's thought to be encoded (in a sense, imprinted). One of the most common causes of tinnitus is damage to the hair cells in the cochlea (see "Auditory pathways and tinnitus"). These cells help transform sound waves into nerve signals. If the auditory pathways or circuits in the brain don't receive the signals they're expecting from the cochlea, the brain in effect "turns up the gain" on those pathways in an effort to detect the signal — in much the same way that you turn up the volume on a car radio when you're trying to find a station's signal. The resulting electrical noise takes the form of tinnitus — a sound that is high-pitched if hearing loss is in the high-frequency range and low-pitched if it's in the low-frequency range. This kind of tinnitus resembles phantom limb pain in an amputee — the brain is producing abnormal nerve signals to compensate for missing input.
Tinnitus is associated with a high level of emotional stress. Depression, anxiety, and insomnia are not uncommon in people with tinnitus. Cognitive behavioral therapy (CBT) is a type of talk therapy that helps people with tinnitus learn to live with their condition. Rather than reducing the sound itself, CBT teaches you how to accept it. The goal is to improve your quality of life and prevent tinnitus from driving you crazy.

Like Shore and Kilgard’s work, most of the promising research on tinnitus has to do with stimulating or altering the brain’s hyperactivity in ways that reduce tinnitus. Some studies have shown electromagnetic brain stimulation — using either invasive or noninvasive techniques, including procedures that involve surgically implanted electrodes or scalp electrodes — may help reverse a patient’s tinnitus. (6) While none of these treatment options are currently available, all have shown some success in treating the condition.
Demographic variables (age, sex, type of tinnitus) and baseline THI scores of placebo (n = 16) and treatment (n = 11) groups did not significantly differ from one another at the start of the study. At 3 months, participants in the treatment group reported significantly lower scores on the THI when compared to the placebo group (p < .05). The treatment group also showed an 11-point drop in THI scores when comparing baseline and 3 months (p < .05; please see Figure 2). THI scores for the placebo group comparing both time points were non-significant. Past studies have indicated that the minimum change in the THI score to be considered clinically significant is a drop of 6 to 7 points.9 As such, the results of our clinical study suggest that tinnitus and its related symptoms can produce a clinically significant reduction in tinnitus within the first 3 months using the personalized music-based therapy.

Tinnitus usually comes in the form of a high-pitched tone in one or both ears, but can also sound like a clicking, roaring or whooshing sound. While tinnitus isn't fully understood, it is known to be a sign that something is wrong in the auditory system: the ear, the auditory nerve that connects the inner ear to the brain, or the parts of the brain that process sound. Something as simple as a piece of earwax blocking the ear canal can cause tinnitus, but it can also arise from a number of health conditions. For example, when sensory cells in the inner ear are damaged from loud noise, the resulting hearing loss changes some of the signals in the brain to cause tinnitus.
Tinnitus is a condition in which you hear noises when there is no outside source of the sounds. The noises can have many different forms (ringing, clicking, buzzing, roaring, etc.) and can be soft or loud. Treatment options include hearing aids; tinnitus masking devices; devices that increase background noise levels; coping, relaxation, anxiety control methods; and counseling and retraining therapy.Tinnitus does not typically occur in children.
Schecklmann et al (2014) suggested that tinnitus is associated with alterations in motor cortex excitability, by pooling several studies, and reported that there are differences in intracortical inhibition, intra-cortical facilitation, and cortical silent period. We doubt that this means that motor cortex excitability causes tinnitus, but rather we suspect that these findings reflect features of brain organization that may predispose certain persons to develop tinnitus over someone else.
Take medication for a thyroid disorder, if necessary. Tinnitus can be related to both hyperthyroidism, or an overactive thyroid, and hypothyroidism, or an underactive thyroid. Your doctor can check for swelling or lumps in your thyroid gland, which is in your throat, and order blood screens to test its function. If they find an issue, they’ll prescribe medication to regulate your thyroid hormone levels.[17]
Temporomandibular joint (TMJ) syndrome is a disorder that causes symptoms like pain, clicking, and popping of the jaw. TMJ is caused by injury to the temporomandibular joint. Stress, poor posture, jaw trauma, genetic predisposition, and inflammatory disorders are risk factors for the condition. A variety of self-care measures (application of ice, use of over-the-counter pain medication, massage, relaxation techniques) and medical treatment options (dental splint, Botox, prescription medications, surgery) are available to manage TMJ. The prognosis of TMJ is good with proper treatment.
Tinnitus is commonly thought of as a symptom of adulthood, and is often overlooked in children. Children with hearing loss have a high incidence of tinnitus, even though they do not express the condition or its effect on their lives.[100] Children do not generally report tinnitus spontaneously and their complaints may not be taken seriously.[101] Among those children who do complain of tinnitus, there is an increased likelihood of associated otological or neurological pathology such as migraine, juvenile Meniere’s disease or chronic suppurative otitis media.[102] Its reported prevalence varies from 12% to 36% in children with normal hearing thresholds and up to 66% in children with a hearing loss and approximately 3–10% of children have been reported to be troubled by tinnitus.[103]
Tinnitus can arise anywhere along the auditory pathway, from the outer ear through the middle and inner ear to the brain's auditory cortex, where it's thought to be encoded (in a sense, imprinted). One of the most common causes of tinnitus is damage to the hair cells in the cochlea (see "Auditory pathways and tinnitus"). These cells help transform sound waves into nerve signals. If the auditory pathways or circuits in the brain don't receive the signals they're expecting from the cochlea, the brain in effect "turns up the gain" on those pathways in an effort to detect the signal — in much the same way that you turn up the volume on a car radio when you're trying to find a station's signal. The resulting electrical noise takes the form of tinnitus — a sound that is high-pitched if hearing loss is in the high-frequency range and low-pitched if it's in the low-frequency range. This kind of tinnitus resembles phantom limb pain in an amputee — the brain is producing abnormal nerve signals to compensate for missing input.
Another thing that tinnitus and sleep problems share? A tendency among people to brush them off, and try to “tough it out,” rather than addressing their conditions. It’s not worth it, to your health or your quality of life. If you’re having trouble sleeping and you have symptoms that sound like tinnitus, talk with your doctor about both, so you can sleep better—and feel better— soon.

Technology and portable music devices also contribute to noise pollution, especially in younger people. Keep the volume of your phone, MP3 players or iPod on the lower end when listening to headphones, and don’t play very loud noises for long durations of time. To aid in tinnitus treatment, look out for changes in your ability to hear if you’re frequently exposed to loud noises, limit use of headphones or consider wearing earplugs.
When there does not seem to be a connection with a disorder of the inner ear or auditory nerve, the tinnitus is called nonotic (i.e. not otic). In some 30% of tinnitus cases, the tinnitus is influenced by the somatosensory system, for instance people can increase or decrease their tinnitus by moving their face, head, or neck.[27] This type is called somatic or craniocervical tinnitus, since it is only head or neck movements that have an effect.[25]
Hearing loss: Probably the most common cause for tinnitus is hearing loss. As we age, or because of trauma to the ear (through noise, drugs, or chemicals), the portion of the ear that allows us to hear, the cochlea, becomes damaged. Current theories suggest that because the cochlea is no longer sending the normal signals to the brain, the brain becomes confused and essentially develops its own noise to make up for the lack of normal sound signals. This then is interpreted as a sound, tinnitus. This tinnitus can be made worse by anything that makes our hearing worse, such as ear infections or excess wax in the ear.
Exposure to loud noise: Loud noise exposure is a very common cause of tinnitus today, and it often damages hearing as well. Unfortunately, many people are unconcerned about the harmful effects of excessively loud noise from firearms, high intensity music, or other sources. Twenty-six million American adults have suffered noise-induced hearing loss, according to the NIDCD.
There are two types of tinnitus: subjective tinnitus and objective tinnitus.[3] Tinnitus is usually subjective, meaning that there is no sound detectable by other means.[3] Subjective tinnitus has also been called "tinnitus aurium", "non-auditory" or "non-vibratory" tinnitus. In very rare cases tinnitus can be heard by someone else using a stethoscope, and in less rare – but still uncommon – cases it can be measured as a spontaneous otoacoustic emission (SOAE) in the ear canal. In such cases it is objective tinnitus,[3] also called "pseudo-tinnitus" or "vibratory" tinnitus.
Tinnitus is characterized by ringing or buzzing in the ears. Exposure to loud noises, earwax blockages, heart or blood vessel issues, prescription medications, and thyroid disorders can all cause tinnitus. See your doctor for an accurate diagnosis, and work with them to develop a treatment plan. In many cases, tinnitus is irreversible, but there are several ways to reduce its severity. For instance, sound generators, hearing aids, and medication can help mask ringing or buzzing. Tinnitus research is a constantly evolving field, and you might be able to try experimental therapies as well.
In the advance online edition of Nature on January 12, 2011, the researchers reported that the number of neurons tuned to the high frequency had jumped by 79% compared to control rats. The scientist then tested 2 different tones in a second group of rats but stimulated the vagus nerve only for the higher one. The neurons tuned to the higher tone increased by 70%, while those tuned to the lower one decreased in number. This showed that the tone alone wasn’t enough to initiate the change; it had to be accompanied by VNS.
Other potential sources of the sounds normally associated with tinnitus should be ruled out. For instance, two recognized sources of high-pitched sounds might be electromagnetic fields common in modern wiring and various sound signal transmissions. A common and often misdiagnosed condition that mimics tinnitus is radio frequency (RF) hearing, in which subjects have been tested and found to hear high-pitched transmission frequencies that sound similar to tinnitus.[71][72]
An assessment of hyperacusis, a frequent accompaniment of tinnitus,[56] may also be made.[57] The measured parameter is Loudness Discomfort Level (LDL) in dB, the subjective level of acute discomfort at specified frequencies over the frequency range of hearing. This defines a dynamic range between the hearing threshold at that frequency and the loudnes discomfort level. A compressed dynamic range over a particular frequency range is associated with subjectve hyperacusis. Normal hearing threshold is generally defined as 0–20 decibels (dB). Normal loudness discomfort levels are 85–90+ dB, with some authorities citing 100 dB. A dynamic range of 55 dB or less is indicative of hyperacusis.[58][59]

Some persons with severe TMJ (temporomandibular joint) arthritis have severe tinnitus. Generally these persons say that there is a "screeching" sound. This is another somatic tinnitus. TMJ is extremely common -- about 25% of the population. The exact prevalence of TMJ associated tinnitus is not established, but presumably it is rather high too. Having TMJ increases the odds that you have tinnitus too, by about a factor of 1.6-3.22 (Park and Moon, 2014; Lee et al, 2016). This is the a large risk factor for tinnitus, similar to the risk from hearing loss (see table above).


Hearing loss: Probably the most common cause for tinnitus is hearing loss. As we age, or because of trauma to the ear (through noise, drugs, or chemicals), the portion of the ear that allows us to hear, the cochlea, becomes damaged. Current theories suggest that because the cochlea is no longer sending the normal signals to the brain, the brain becomes confused and essentially develops its own noise to make up for the lack of normal sound signals. This then is interpreted as a sound, tinnitus. This tinnitus can be made worse by anything that makes our hearing worse, such as ear infections or excess wax in the ear.
Most people develop tinnitus as a symptom of hearing loss. When you lose hearing, your brain undergoes changes in the way it processes sound frequencies. A hearing aid is a small electronic device that uses a microphone, amplifier, and speaker to increase the volume of external noises. This can mollify neuroplastic changes in the brain’s ability to process sound.
We provide here a list of known ototoxic drugs and herbs that have been known to cause or exacerbate tinnitus. This list is for educational purposes only and is available as a resource to you to use in your discussions with your health care professional. We thank doctor Neil Bauman, Ph.D., for his expertise in this area and for compiling this list for us.
Temporomandibular joint (TMJ) syndrome is a disorder that causes symptoms like pain, clicking, and popping of the jaw. TMJ is caused by injury to the temporomandibular joint. Stress, poor posture, jaw trauma, genetic predisposition, and inflammatory disorders are risk factors for the condition. A variety of self-care measures (application of ice, use of over-the-counter pain medication, massage, relaxation techniques) and medical treatment options (dental splint, Botox, prescription medications, surgery) are available to manage TMJ. The prognosis of TMJ is good with proper treatment.
Acoustic neural stimulation is a relatively new technique for people whose tinnitus is very loud or won’t go away. It uses a palm-sized device and headphones to deliver a broadband acoustic signal embedded in music. The treatment helps stimulate change in the neural circuits in the brain, which eventually desensitizes you to the tinnitus. The device has been shown to be effective in reducing or eliminating tinnitus in a significant number of study volunteers.

Various techniques can help make tinnitus tolerable, although the ability to tolerate it varies from person to person. Many people find that background sound helps mask the tinnitus and helps them fall asleep. Some people play background music. Other people use a tinnitus masker, which is a device worn like a hearing aid that produces a constant level of neutral sounds. For the profoundly deaf, an implant in the cochlea (the organ of hearing) may reduce tinnitus but is only done for people with severe to profound hearing loss in both ears. If these standard techniques are not helpful, people may want to seek treatment in clinics that specialize in the treatment of tinnitus.

The researchers point out that up to one in five adults will develop tinnitus, a distressing disorder in which people hear buzzing, ringing and other sounds from no external source. Tinnitus can occur in one or both ears, and is usually continuous but can fluctuate. A randomised controlled trial is the best way of assessing the effectiveness of an intervention.
Information on this website is provided for informational purposes only and is not intended as a substitute for the advice provided by your physician or other healthcare professional. You should not use the information on this website for diagnosing or treating a health problem or disease, or prescribing any medication or other treatment. Any third party offering or advertising on this website does not constitute an endorsement by Andrew Weil, M.D. or Healthy Lifestyle Brands. 

Tinnitus is characterized by ringing or buzzing in the ears. Exposure to loud noises, earwax blockages, heart or blood vessel issues, prescription medications, and thyroid disorders can all cause tinnitus. See your doctor for an accurate diagnosis, and work with them to develop a treatment plan. In many cases, tinnitus is irreversible, but there are several ways to reduce its severity. For instance, sound generators, hearing aids, and medication can help mask ringing or buzzing. Tinnitus research is a constantly evolving field, and you might be able to try experimental therapies as well.
In addition, a healthy lifestyle can reduce the impact of tinnitus. Avoid physical and emotional stress, as these can cause or intensify tinnitus. You may be able to reduce your stress levels through exercise, meditation, deep breathing, or massage therapy. If you suffer from high blood pressure, consult your doctor for help controlling it, as this can also impact tinnitus. Finally, get plenty of rest to avoid fatigue and exercise regularly to improve your circulation. Although this won’t eliminate the ringing in your ears, it may prevent it from worsening.
Another way of splitting up tinnitus is into objective and subjective. Objective tinnitus can be heard by the examiner. Subjective cannot. Practically, as there is only a tiny proportion of the population with objective tinnitus, this method of categorizing tinnitus is rarely of any help. It seems to us that it should be possible to separate out tinnitus into inner ear vs everything else using some of the large array of audiologic testing available today. For example, it would seem to us that tinnitus should intrinsically "mask" sounds of the same pitch, and that this could be quantified using procedures that are "tuned" to the tinnitus.
Loud noise is the leading cause of damage to the inner ear. Most patients with noise trauma describe a whistling tinnitus (Nicholas-Puel et al,. 2002). In a large study of tinnitus, avoidance of occupational noise was one of two factors most important in preventing tinnitus (Sindhusake et al. 2003). The other important factor was the rapidity of treating ear infections.
There seems to be a two-way-street relationship between tinnitus and sleep problems. The symptoms of tinnitus can interfere with sleeping well—and poor sleep can make tinnitus more aggravating and difficult to manage effectively. In the same study that found a majority of people with tinnitus had a sleep disorder, the scientists also found that the presence of sleep disorders made tinnitus more disruptive.
Pulsatile tinnitus is generally caused by abnormalities or disorders affecting the blood vessels (vascular disorders), especially the blood vessels near or around the ears. Such abnormalities or disorders can cause a change in the blood flow through the affected blood vessels. The blood vessels could be weakened from damage caused by hardening of the arteries (atherosclerosis). For example, abnormalities affecting the carotid artery, the main artery serving the brain, can be associated with pulsatile tinnitus. A rare cause of pulsatile tinnitus is a disorder known as fibromuscular dysplasia (FMD), a condition characterized by abnormal development of the arterial wall. When the carotid artery is affected by FMD, pulsatile tinnitus can develop.
Subjective tinnitus is the most common type and accounts for 95 percent of cases. Only you can hear it and it’s usually caused by exposure to excessive noise. It can appear suddenly and may last three months (acute) to 12 months (subacute), or longer. Subjective tinnitus is often accompanied by hearing loss due to hair cell nerve damage. The severity of symptoms varies from patient to patient, and largely depends on your reaction to the noise.
Unfortunately that means tinnitus is a very complicated condition that involves several systems of the body. The good news, though, is that as doctors and researchers have developed a better understanding of the mechanisms behind tinnitus, they’ve also been able to develop new and promising treatments that target the brain rather than the ear — and have more of a chance of actually reversing the problem.
There are two types of tinnitus: subjective tinnitus and objective tinnitus.[3] Tinnitus is usually subjective, meaning that there is no sound detectable by other means.[3] Subjective tinnitus has also been called "tinnitus aurium", "non-auditory" or "non-vibratory" tinnitus. In very rare cases tinnitus can be heard by someone else using a stethoscope, and in less rare – but still uncommon – cases it can be measured as a spontaneous otoacoustic emission (SOAE) in the ear canal. In such cases it is objective tinnitus,[3] also called "pseudo-tinnitus" or "vibratory" tinnitus.
×