Schecklmann et al (2014) suggested that tinnitus is associated with alterations in motor cortex excitability, by pooling several studies, and reported that there are differences in intracortical inhibition, intra-cortical facilitation, and cortical silent period. We doubt that this means that motor cortex excitability causes tinnitus, but rather we suspect that these findings reflect features of brain organization that may predispose certain persons to develop tinnitus over someone else.
This study has several strengths. It included a relatively large number of patients, reducing the possibility of bias by “masking” which treatment patients received, classifying participants according to the severity of their tinnitus and using highly standardised interventions. Also, the researchers used established scales to measure the severity of tinnitus and its impact on quality of life.
The results were calculated using a measure called “effect size”, which is a way of quantifying the size of the difference between the two groups. For the difference in quality of life scores between groups, the effect size was calculated to be 0.24. This can be interpreted as a “small” effect. In other words, treatment including CBT gave a small improvement in quality of life compared with usual care.
Most tinnitus is "sensorineural," meaning that it's due to hearing loss at the cochlea or cochlear nerve level. But tinnitus may originate in other places. Our bodies normally produce sounds (called somatic sounds) that we usually don't notice because we are listening to external sounds. Anything that blocks normal hearing can bring somatic sounds to our attention. For example, you may get head noise when earwax blocks the outer ear.
The latest news about tinnitus treatment comes from a UK study showing that Mindfulness Based Cognitive Therapy (MBCT) significantly helps reduce the severity of the disorder. The researchers reported that, among the 75 patients being studied, both relaxation therapy and MBCT worked to alleviate symptoms as well as reducing psychological distress, anxiety and depression related to the disorder. MBCT led to greater reductions in tinnitus severity and the improvements lasted longer.
The researchers next tested whether tinnitus could be reversed in noise-exposed rats. The animals received VNS paired with various tones other than the tinnitus frequency 300 times a day for about 3 weeks. Rats that received the treatment showed behavioral changes indicating that the ringing had stopped. Neural responses in the brain's auditory cortex returned to their normal levels as well, indicating that the tinnitus had disappeared.
Over the last 40 years of treating patients suffering from tinnitus, there’s been one over the counter medication that has shown the greatest promise. While it doesn’t provide relief for everyone, I continue to see an 87% efficacy rate in my patients. The treatment, which does not require a prescription, is known as Tinnitus Control and is available online at http://www.tinnituscontrol.com
Most people develop tinnitus as a symptom of hearing loss. When you lose hearing, your brain undergoes changes in the way it processes sound frequencies. A hearing aid is a small electronic device that uses a microphone, amplifier, and speaker to increase the volume of external noises. This can mollify neuroplastic changes in the brain’s ability to process sound.
This tinnitus treatment we developed makes use of software that customizes a music-based therapy for each individual tinnitus sufferer. The software achieves this by incorporating a computational model of the “tinnitus brain.” This model captures changes in the auditory brain which may be causing the tinnitus.5,7 We do this by taking into account the individual’s audiogram and a pitch match of their tinnitus, which generates a tinnitus profile unique to him or her. The software then uses the model to predict how each music track can be altered spectrally to reduce tinnitus for that specific tinnitus profile. Delivering the treatment using headphones that could produce high frequencies (above 10–12 kHz) was an integral part of treatment effectiveness. With such headphones, the treatment could work by taking advantage of the same kind of brain plasticity that may contribute to the person's tinnitus in the first place without being limited by a lack of high-frequency sounds.8 By incorporating the latest tinnitus research into our software, we developed a treatment approach that provides greater promise in treating tinnitus than existing treatments with a one-size-fits-all approach.
Antidepressants. Antidepressants, such as nortriptyline and amitriptyline, have been used as mood enhancers to help someone with tinnitus cope with the life changing implications and complications it brings. However, they are often only prescribed in the most severe of tinnitus cases as they carry some serious side effects that might not make them worth taking for everyone. These include blurred vision, heart problems, dry mouth and constipation.