Oticon Tinnitus SoundSupport works by adding sound to the buzzing, hissing, or roaring you already hear. This may seem peculiar, but in fact, the relief sounds (which are dynamic and soothing) can mix with and distract you from those bothersome noises, giving you control over your condition. The flexible program includes a variety of relief sounds that can ease the effects of tinnitus. Your audiologist can personalize the sounds to your needs and preferences, and they can be used alongside Tinnitus Retraining Therapy for instruction and support.
Muscle spasms: Tinnitus that is described as clicking may be due to abnormalities that cause the muscle in the roof of the mouth (palate) to go into spasm. This causes the Eustachian tube, which helps equalize pressure in the ears, to repeatedly open and close. Multiple sclerosis and other neurologic diseases that are associated with muscle spasms may also be a cause of tinnitus, as they may lead to spasms of certain muscles in the middle ear that can cause the repetitive clicking.
Medication. Some medications are known to be ototoxic while others list tinnitus as a side effect without causing permanent damage to the ear structures. New medications come out so often that it is difficult to maintain an up to date listing; another option, if you are experiencing tinnitus and are curious if it could be your medication, is to talk to your pharmacist or look up your specific prescriptions online through a website such as www.drugs.com. You should never stop a medication without consulting with your physician, even if you think it may be contributing to your tinnitus.

In many cases, tinnitus is caused by hyperactivity (or too much activity) in the brain’s auditory cortex. “When there’s damage or a loss of input in the ear [such as hearing loss, head trauma, or a blood vessel problem], the brain tries to turn up certain channels in order to compensate,” Dr. Kilgard explains. When the brain doesn’t get that tuning quite right, the result is tinnitus.
Most of the causes of tinnitus alter neurological activity within the auditory cortex, the portion of the brain responsible for hearing. The transmission of sound is interrupted, so some of the neural circuits fail to receive signals. Instead of causing hearing loss, as you might expect due to the lack of stimulation, the neural circuits begin chattering. First, they chatter alone. Then, they become hyperactive and synchronous. When we experience this deviation, our brains attempt to compensate for the change by interpreting the neurological activity as sound. This can resemble ringing, buzzing, hissing, whistling, or roaring, amongst a variety of other noises.
While tinnitus is as varied as its causes, it can be grouped into two categories: tonal and non-tonal. Tonal tinnitus is more common and describes the perception of a near-continuous sound or overlapping sounds with a well-defined frequency (e.g., whistling, ringing, buzzing). Non-tonal forms of tinnitus include humming, clicking, crackling, and rumbling.
When tinnitus is unexpected and unwelcomed, it can lead to a negative reaction to the tinnitus. This can create a vicious cycle. When tinnitus is perceived, it can prompt emotions, including frustration, fear, unhappiness, etc.  These can, in turn, cause physical reactions such as anxiety and stress.  This reinforces the tinnitus and perpetuates the cycle. 
The majority of cases of tinnitus are subjective. Objective tinnitus is far less common. However, a diagnosis of objective tinnitus is tied to how hard and well the objective (outside) listener tries to hear the sound in question. Because of this problem, some clinicians now simply refer to tinnitus as either rhythmic or non-rhythmic. Generally, rhythmic tinnitus correlates with objective tinnitus and non-rhythmic tinnitus correlates with subjective tinnitus. Specific forms of tinnitus such as pulsatile tinnitus and muscular tinnitus, which are forms of rhythmic tinnitus, are relatively rare. Pulsatile tinnitus may also be known as pulse-synchronous tinnitus. Properly identifying and distinguishing these less common forms of tinnitus is important because the underlying cause of pulsatile or muscular tinnitus can often be identified and treated.
The treatment involves implanting a small electrode into a person’s neck near the vagus nerve. The patient then listens to specific tones that are paired with small electric pulses sent to the vagus nerve. This vagus nerve stimulation, coupled with the sound-based stimulation of the auditory cortex, can “turn down” the patient’s tinnitus. Though, Kilgard adds, “It’s not 100 percent yet.”

Supporting the idea that central reorganization is overestimated as "the" cause of tinnitus, a recent study by Wineland et al showed no changes in central connectivity of auditory cortex or other key cortical regions (Wineland et al, 2012). Considering other parts of the brain, Ueyama et al (2013) reported that there was increased fMRI activity in the bilateral rectus gyri, as well as cingulate gyri correlating with distress. Loudness was correlated with values in the thalamus, bilateral hippocampus and left caudate. In other words, the changes in the brain associated with tinnitus seem to be associated with emotional reaction (e.g. cingulate), and input systems (e.g. thalamus). There are a few areas whose role is not so obvious (e.g. caudate). This makes a more sense than the Wineland result, but of course, they were measuring different things. MRI studies related to audition or dizziness must be interpreted with great caution as the magnetic field of the MRI stimulates the inner ear, and because MRI scanners are noisy.


Tinnitus is commonly described as a ringing in the ears, but it also can sound like roaring, clicking, hissing, or buzzing. It may be soft or loud, high pitched or low pitched. You might hear it in either one or both ears. Roughly 10 percent of the adult population of the United States has experienced tinnitus lasting at least five minutes in the past year. This amounts to nearly 25 million Americans.
Most tinnitus is subjective, meaning that only you can hear the noise. But sometimes it's objective, meaning that someone else can hear it, too. For example, if you have a heart murmur, you may hear a whooshing sound with every heartbeat; your clinician can also hear that sound through a stethoscope. Some people hear their heartbeat inside the ear — a phenomenon called pulsatile tinnitus. It's more likely to happen in older people, because blood flow tends to be more turbulent in arteries whose walls have stiffened with age. Pulsatile tinnitus may be more noticeable at night, when you're lying in bed and there are fewer external sounds to mask the tinnitus. If you notice any new pulsatile tinnitus, you should consult a clinician, because in rare cases it is a sign of a tumor or blood vessel damage.
Tinnitus (pronounced tih-NITE-us or TIN-ih-tus) is sound in the head with no external source. For many, it's a ringing sound, while for others, it's whistling, buzzing, chirping, hissing, humming, roaring, or even shrieking. The sound may seem to come from one ear or both, from inside the head, or from a distance. It may be constant or intermittent, steady or pulsating.
Many drugs have been studied for treating tinnitus. For some, treatment with low doses of anti-anxiety drugs -- such as Valium or antidepressants such as Elavil -- help reduce tinnitus. The use of a steroid placed into the middle ear along with an anti-anxiety medicine called alprazolam has been shown to be effective for some people. Some small studies have shown that a hormone called misoprostol may be helpful in some cases.

Her most recent study, published in January 2018 in the journal Science Translational Medicine, showed success rates similar to Kilgard’s on 20 adult tinnitus patients. (5) People who underwent the therapy 30 minutes a day for one month reported about a 50 percent drop in the loudness of their tinnitus. More than half of the study participants also reported that their tinnitus bothered them less after the therapy, she says.
Most people who suffer from tinnitus also experience hearing loss to some degree. As they often accompany one another, the two conditions may be correlated. In fact, some researchers believe that subjective tinnitus can only occur if the auditory system has been previously damaged (source). The loss of certain sound frequencies due to hearing loss may change how the brain processes sound, causing it to adapt and fill in the gaps with tinnitus. The underlying hearing loss typically results from exposure to loud noises or advanced age:

Some people experience a sound that beats in time with their pulse, known as pulsatile tinnitus or vascular tinnitus.[40] Pulsatile tinnitus is usually objective in nature, resulting from altered blood flow, increased blood turbulence near the ear, such as from atherosclerosis or venous hum,[41] but it can also arise as a subjective phenomenon from an increased awareness of blood flow in the ear.[40] Rarely, pulsatile tinnitus may be a symptom of potentially life-threatening conditions such as carotid artery aneurysm[42] or carotid artery dissection.[43] Pulsatile tinnitus may also indicate vasculitis, or more specifically, giant cell arteritis. Pulsatile tinnitus may also be an indication of idiopathic intracranial hypertension.[44] Pulsatile tinnitus can be a symptom of intracranial vascular abnormalities and should be evaluated for irregular noises of blood flow (bruits).[45]
The researchers point out that up to one in five adults will develop tinnitus, a distressing disorder in which people hear buzzing, ringing and other sounds from no external source. Tinnitus can occur in one or both ears, and is usually continuous but can fluctuate. A randomised controlled trial is the best way of assessing the effectiveness of an intervention.

Tinnitus is not a disease — it’s a symptom. It’s a sign that something is wrong with your auditory system, which includes your ear, the auditory nerve that connects the inner ear to the brain, and the parts of the brain that process sound. There are a variety of different conditions that can cause tinnitus. One of the most common is noise-induced hearing loss.
An ultrasound is another test that may be used to aid in the diagnosis of tinnitus. An ultrasound uses reflected high-frequency sound waves and their echoes to create images of structures within the body. An ultrasound can reveal how blood flows within vessels, but is only useful for accessible vessels. It is not helpful for blood vessels within the skull.
One of the big problems associated with curing tinnitus, experts say, is that it’s really a symptom of multiple conditions, as opposed to being a single condition with a predictable trigger. In fact, more than 200 different conditions — problems ranging from hearing loss to head or neck trauma — have been linked with tinnitus, which makes it a real bear to try to stop. (3)
^ Jump up to: a b Schecklmann, Martin; Vielsmeier, Veronika; Steffens, Thomas; Landgrebe, Michael; Langguth, Berthold; Kleinjung, Tobias; Andersson, Gerhard (18 April 2012). "Relationship between Audiometric Slope and Tinnitus Pitch in Tinnitus Patients: Insights into the Mechanisms of Tinnitus Generation". PLOS One. 7 (4): e34878. Bibcode:2012PLoSO...734878S. doi:10.1371/journal.pone.0034878. PMC 3329543. PMID 22529949.
We occasionally recommend neuropsychological testing using a simple screening questionnaire -- depression, anxiety, and OCD (obsessive compulsive disorder) are common in persons with tinnitus. This is not surprising considering how disturbing tinnitus may be to ones life (Holmes and Padgham, 2009). Persons with OCD tend to "obsess" about tinnitus. Treatment of these psychological conditions may be extremely helpful.
Participants were contacted to complete questionnaires (including THI) for the three-month assessment. A 30-minute individual phone interview with each participant was also conducted to explore their experiences with using the music package on a daily basis, and to further understand how the music package was affecting their tinnitus. At present, 27 participants have been interviewed to obtain the results presented here.
Acoustic qualification of tinnitus will include measurement of several acoustic parameters like frequency in cases of monotone tinnitus or frequency range and bandwidth in cases of narrow band noise tinnitus, loudness in dB above hearing threshold at the indicated frequency, mixing-point, and minimum masking level.[51] In most cases, tinnitus pitch or frequency range is between 5 kHz and 10 kHz,[52] and loudness between 5 and 15 dB above the hearing threshold.[53]
There is a growing body of evidence suggesting that some tinnitus is a consequence of neuroplastic alterations in the central auditory pathway. These alterations are assumed to result from a disturbed sensory input, caused by hearing loss.[28] Hearing loss could indeed cause a homeostatic response of neurons in the central auditory system, and therefore cause tinnitus.[29]
Cognitive behavioral therapy (CBT). CBT uses techniques such as cognitive restructuring and relaxation to change the way patients think about and respond to tinnitus. Patients usually keep a diary and perform "homework" to help build their coping skills. Therapy is generally short-term — for example, weekly sessions for two to six months. A 2010 review of six studies by the Cochrane Collaboration (an international group of health authorities who evaluate randomized trials) found that after CBT, the sound was no less loud, but it was significantly less bothersome, and patients' quality of life improved.
Ear protection can mitigate the negative effects of loud noises and prevent the exacerbation of tinnitus. This is especially important if you work in a loud environment or regularly visit loud places, like shooting ranges, concerts, and clubs. Wearing custom earplugs or special earmuffs can go a long way toward preventing your tinnitus from worsening.
Everything you need to know about acoustic neuroma Acoustic neuroma is a benign tumor affecting nerves between the inner ear and the brain. It can lead to hearing loss, tinnitus, and loss of balance. This MNT Knowledge Center article explores the treatments, symptoms, and causes of acoustic neuroma, as well as how the condition may become more severe and complicate. Read now

We use cookies and similar technologies to improve your browsing experience, personalize content and offers, show targeted ads, analyze traffic, and better understand you. We may share your information with third-party partners for marketing purposes. To learn more and make choices about data use, visit our Advertising Policy and Privacy Policy. By clicking “Accept and Continue” below, (1) you consent to these activities unless and until you withdraw your consent using our rights request form, and (2) you consent to allow your data to be transferred, processed, and stored in the United States.
However, the multidisciplinary approach based on CBT is not a “cure for tinnitus”, as implied in some papers, but rather a system for managing its symptoms and effects on people’s lives. The differences in outcomes between the treatment and usual care groups were quite small, with the multidisciplinary approach giving a small improvement in quality of life compared with usual care, and moderate improvements in tinnitus severity and impairment. Also, less than 70% of participants completed the trial to 12 months, and this could have affected the reliability of the study’s overall results. Furthermore, as the patients in the study were only followed for 12 months, it is uncertain whether this approach can help in the longer term.

Tinnitus Control contains both a spray that is administered under the tongue three times a day and a gelatin capsule that is to be taken twice a day. Each package comes with a one month’s supply of the spray (1 fluid ounce) and capsules (60 capsules). Tinnitus Control is not currently available in local stores such as CVS, Walgreens and Rite Aid, but it is available directly from the manufacturer’s website at http://www.tinnituscontrol.com

It is very well accepted that tinnitus often is "centralized" -- while it is usually initiated with an inner ear event, persistent tinnitus is associated with changes in central auditory processing (Adjamian et al, 2009). Sometimes this idea is used to put forth a "therapeutic nihilism" -- suggesting that fixing the "cause" -- i.e. inner ear disorder -- will not make the tinnitus go away.   This to us seems overly simplistic -- while it is clear that the central nervous system participates in perception of sounds, and thus must be a participant in the "tinnitus" process, we think that it is implausible that in most cases that there is not an underlying "driver" for persistent tinnitus.
All materials posted on the ATA website are subject to copyright owned by the American Tinnitus Association (ATA). No part of these pages, either text, file or image may be used for any purpose other than personal use. Any reproduction, retransmissions, republication, storage in a retrieval system or retransmission, in any form or by any means, electronic, mechanical or otherwise, is strictly prohibited without prior written permission. Submit our contact form for general inquiries.
×