Tinnitus sufferers most often cite stress as the cause of their condition. While it’s true noises are perceived more acutely when you are tense, there is no scientific basis for saying stress causes tinnitus. But the reverse is definitely true — hearing a constant noise in your ears can certainly cause stress and anxiety, and even lead to depression in some cases.
There is a growing body of evidence suggesting that some tinnitus is a consequence of neuroplastic alterations in the central auditory pathway. These alterations are assumed to result from a disturbed sensory input, caused by hearing loss.[28] Hearing loss could indeed cause a homeostatic response of neurons in the central auditory system, and therefore cause tinnitus.[29]
Repetitive transcranial magnetic stimulation (rTMS). This technique, which uses a small device placed on the scalp to generate short magnetic pulses, is already being used to normalize electrical activity in the brains of people with epilepsy. Preliminary trials of rTMS in humans, funded by the NIDCD, are helping researchers pinpoint the best places in the brain to stimulate in order to suppress tinnitus. Researchers are also looking for ways to identify which people are most likely to respond well to stimulation devices.
Your doctor will try to determine what is causing the condition. If it is not due to a medication side effect or a general medical condition (such as high blood pressure), he or she may refer you to an otolaryngologist (an ear, nose, and throat doctor) or an audiologist (hearing specialist). It is especially important to see an otolaryngologist if you experience tinnitus in only one ear, tinnitus that sounds like your heartbeat or pulse (pulsatile tinnitus), tinnitus with sudden or fluctuating hearing loss, pressure or fullness in one or both ears, and/or dizziness or balance problems. Unless the cause of the tinnitus is obvious on physical examination, a hearing test is usually required.
Many of us experience tinnitus every once in a while. If you’re exposed to extremely loud noise, or leave a noisy environment for a quiet one, you may notice a temporary buzzing or ringing in your ear. Maybe you’ve been near loud construction—like a jackhammer, or stepped out of a loud action movie or music concert to a quiet lobby or street. (Be aware: even a single exposure to very loud noise can do damage to your hearing, and increase your risk for tinnitus.)
Use other relaxation techniques. Tinnitus is understandably anxiety provoking, often a source of frustration and stress throughout the day and night. Reducing anxiety, and finding ways to relax, have benefits for both tinnitus and sleep. Relaxation exercises can reduce the aggravation of tinnitus, and make you more able to fall asleep. A few of the relaxation techniques my patients find most effective and easy to use are:
If your mind is occupied with something absorbing, it is easier to forget about the tinnitus. Work, leisure pursuits and other interests can all help to provide a worthwhile focus. If you don't have a hobby, now might be the time to start something, many people say that painting or writing helps. Bear in mind however, that excessive activity may produce stress, so take time for relaxing activities and social interaction where possible.
People with warning signs should see a doctor right away. People without warning signs in whom tinnitus recently developed should call their doctor, as should people with pulsatile tinnitus. Most people with tinnitus and no warning signs have had tinnitus for a long time. They can discuss the matter with their doctor and be seen at a mutually convenient time.

Imagine you’re settling in for a night’s rest. In your quiet bedroom, you’re tune right into those tinnitus noises—and you can’t shake your focus on them. You start to wonder about how you’ll ever fall asleep with these sounds in your ears. You think about the rest you’re missing out on because you’re not already asleep, and you wonder how you’ll have the energy to make it through your day.
Don’t ignore ear pain. Pain or discomfort in your ear can be a sign of conditions associated with tinnitus, including ear infections and earwax buildup. These conditions, and the discomfort they cause, can also interfere with sleep. Whether your ear pain is sharp or dull, constant or intermittent, accompanied by itching or not, take these symptoms to your doctor.
Tinnitus can arise anywhere along the auditory pathway, from the outer ear through the middle and inner ear to the brain's auditory cortex, where it's thought to be encoded (in a sense, imprinted). One of the most common causes of tinnitus is damage to the hair cells in the cochlea (see "Auditory pathways and tinnitus"). These cells help transform sound waves into nerve signals. If the auditory pathways or circuits in the brain don't receive the signals they're expecting from the cochlea, the brain in effect "turns up the gain" on those pathways in an effort to detect the signal — in much the same way that you turn up the volume on a car radio when you're trying to find a station's signal. The resulting electrical noise takes the form of tinnitus — a sound that is high-pitched if hearing loss is in the high-frequency range and low-pitched if it's in the low-frequency range. This kind of tinnitus resembles phantom limb pain in an amputee — the brain is producing abnormal nerve signals to compensate for missing input.
Every person living with tinnitus hears a unique sound. The sound can be a low or high frequency, and its volume and pitch may change over time, with the severity varying from person to person. Those with acute tinnitus may struggle to sleep, focus at work, or communicate with others. In such cases, treatment plays a crucial role in helping an individual regain control of his or her life.
Luckily, many can live with their tinnitus as it may only occur occasionally and/or is relatively quiet, but for some the tinnitus is so bothersome, severe and intense that it negatively influences their daily life to a very large extend. For those people, it is very natural to look for a cure that can make the tinnitus go away - or at least reduce it.
Tinnitus (pronounced tin-NY-tus or TIN-u-tus) is not a disease. It is a symptom that something is wrong in the auditory system, which includes the ear, the auditory nerve that connects the inner ear to the brain, and the parts of the brain that process sound. Something as simple as a piece of earwax blocking the ear canal can cause tinnitus. But it can also be the result of a number of health conditions, such as:
Shelly-Anne Li is the VP of clinical research and operations at Sound Options Tinnitus Treatments Inc. As a research methodology consultant for various projects, she brings expertise in health research methods, as well as experience from conducting multi-site randomized controlled trials, mixed methods studies and qualitative research. Shelly-Anne Li is currently a PhD candidate at University of Toronto, and obtained her MSc (health sciences) from McMaster University.
The sound you hear is actually being generated by the part of your ear known as the cochlea. It’s a very complicated organ with sensory hairs, internal fluid and nerve receptors, that when damaged (or as it naturally degrades as you get older), can cause it to send incorrect input into your brain. In layman’s terms, because it’s no longer working as well as it used to, it thinks there’s a ringing sound in the area and tells your brain to generate that sound in your head. There are other symptoms of tinnitus, but this is the main one.
This tinnitus treatment we developed makes use of software that customizes a music-based therapy for each individual tinnitus sufferer. The software achieves this by incorporating a computational model of the “tinnitus brain.” This model captures changes in the auditory brain which may be causing the tinnitus.5,7 We do this by taking into account the individual’s audiogram and a pitch match of their tinnitus, which generates a tinnitus profile unique to him or her. The software then uses the model to predict how each music track can be altered spectrally to reduce tinnitus for that specific tinnitus profile. Delivering the treatment using headphones that could produce high frequencies (above 10–12 kHz) was an integral part of treatment effectiveness. With such headphones, the treatment could work by taking advantage of the same kind of brain plasticity that may contribute to the person's tinnitus in the first place without being limited by a lack of high-frequency sounds.8 By incorporating the latest tinnitus research into our software, we developed a treatment approach that provides greater promise in treating tinnitus than existing treatments with a one-size-fits-all approach.
Tinnitus can arise anywhere along the auditory pathway, from the outer ear through the middle and inner ear to the brain's auditory cortex, where it's thought to be encoded (in a sense, imprinted). One of the most common causes of tinnitus is damage to the hair cells in the cochlea (see "Auditory pathways and tinnitus"). These cells help transform sound waves into nerve signals. If the auditory pathways or circuits in the brain don't receive the signals they're expecting from the cochlea, the brain in effect "turns up the gain" on those pathways in an effort to detect the signal — in much the same way that you turn up the volume on a car radio when you're trying to find a station's signal. The resulting electrical noise takes the form of tinnitus — a sound that is high-pitched if hearing loss is in the high-frequency range and low-pitched if it's in the low-frequency range. This kind of tinnitus resembles phantom limb pain in an amputee — the brain is producing abnormal nerve signals to compensate for missing input.
The accepted definition of chronic tinnitus, as compared to normal ear noise experience, is five minutes of ear noise occurring at least twice a week.[50] However, people with chronic tinnitus often experience the noise more frequently than this and can experience it continuously or regularly, such as during the night when there is less environmental noise to mask the sound.
But one of the awesome powers of the human brain is its adaptability. “It can learn and reorganize itself every time you practice something new,” Kilgard says. His research, including a study published in February 2014 in the journal Neuromodulation, has shown this adaptability may be key to helping the brain “turn down” the hyperactivity that can lead to tinnitus, he says. (4)
If you’re struggling with tinnitus and experience anxiety or depression relating to your condition, cognitive behavioural therapy is a form of counselling that helps you to cope and readjust your negative feelings. Tinnitus retraining therapy (TRT) can also be used in conjunction with CBT, harnessing the body's natural ability to tune out sounds and make it part of your subconscious mind rather than at the forefront.
Tinnitus is usually described as a ringing in the ears, but it can also sound like clicking, hissing, roaring, or buzzing. Tinnitus involves perceiving sound when no external noise is present. The sound can be very soft or very loud, and high-pitched or low-pitched. Some people hear it in one ear and others hear it in both. People with severe tinnitus may have problems hearing, working, or sleeping.
Some persons with severe TMJ (temporomandibular joint) arthritis have severe tinnitus. Generally these persons say that there is a "screeching" sound. This is another somatic tinnitus. TMJ is extremely common -- about 25% of the population. The exact prevalence of TMJ associated tinnitus is not established, but presumably it is rather high too. Having TMJ increases the odds that you have tinnitus too, by about a factor of 1.6-3.22 (Park and Moon, 2014; Lee et al, 2016). This is the a large risk factor for tinnitus, similar to the risk from hearing loss (see table above).
Cochlear Implants. These implants are a treatment option for patients that have a severe hearing loss along with tinnitus. Cochlear implants are designed to bypass any damaged parts of the inner ear and send the electrical signals sound makes directly to the auditory nerve. By bringing in outside noise, these implants can effectively mask your tinnitus, as well as stimulate your neural circuits to change.
In some cases, a special audiologic device, which is worn like a hearing aid, may be prescribed. These devices, called masking agents, emit continuous, low-level white noises that suppress the tinnitus sounds. In some cases, a hearing aid may be recommended to help to suppress or diminish the sounds associated with tinnitus. A combination device (masker plus hearing aid) may also be used. Masking devices provide immediate relief by reducing or completely drowning out the tinnitus sound. However, when the masking device is removed, the tinnitus sound remains.
Take the first step toward relief by scheduling a consultation with one of our audiologists. By carefully examining your case history and conducting audiometric testing, we can identify the likely causes of your tinnitus and recommend an effective treatment. In addition, if medically necessary, we may refer you to another physician to complete your diagnosis.
Tinnitus also could be the result of neural circuits thrown out of balance when damage in the inner ear changes signaling activity in the auditory cortex, the part of the brain that processes sound. Or it could be the result of abnormal interactions between neural circuits. The neural circuits involved in hearing aren’t solely dedicated to processing sound. They also communicate with other parts of the brain, such as the limbic region, which regulates mood and emotion.
The treatment group (245 patients) received some elements of standard care (such as a masking device and hearing aid if needed), but also received CBT. The CBT included an extensive educational session, sessions with a clinical psychologist and group treatments involving “psychological education” explaining their condition, cognitive restructuring, exposure techniques, stress relief, applied relaxation and movement therapy.
Atherosclerosis. With age and buildup of cholesterol and other deposits, major blood vessels close to your middle and inner ear lose some of their elasticity — the ability to flex or expand slightly with each heartbeat. That causes blood flow to become more forceful, making it easier for your ear to detect the beats. You can generally hear this type of tinnitus in both ears.
×