If you're not sure of what is causing your tinnitus, a hearing care professional can help pinpoint the issue through a series of tests. It can be helpful to take notes of the sounds you are regularly or irregularly experience to help your hearing healthcare professional put together the clues to what may be causing it. Be sure to alert your practitioner of any pertinent medical history, medications or excessive noise exposure that could be playing a role in your tinnitus.

It is possible that the most common cause of pulsatile tinnitus is sigmoid sinus diverticulum and dehiscence, which can be collectively referred to as sinus wall abnormalities or SSWA. The sigmoid sinus is a blood carrying channel on the side of the brain that receives blood from veins within the brain. The blood eventually exits through the internal jugular vein. Sigmoid sinus diverticulum refers to the formation of small sac-like pouches (diverticula) that protrude through the wall of the sigmoid sinus into the mastoid bone behind the ear. Dehiscence refers to absence of part of the bone that surrounds the sigmoid sinus in the mastoid. It is unknown whether these conditions represent different parts of one disease process or spectrum, or whether they are two distinct conditions. These abnormalities cause pressure, blood flow, and noise changes within the sigmoid sinus, which ultimately results in pulsatile tinnitus. Narrowing of the blood vessel that leads into the sigmoid sinus, known as the transverse sinus, has also been associated with pulsatile tinnitus.
The majority of cases of tinnitus are subjective. Objective tinnitus is far less common. However, a diagnosis of objective tinnitus is tied to how hard and well the objective (outside) listener tries to hear the sound in question. Because of this problem, some clinicians now simply refer to tinnitus as either rhythmic or non-rhythmic. Generally, rhythmic tinnitus correlates with objective tinnitus and non-rhythmic tinnitus correlates with subjective tinnitus. Specific forms of tinnitus such as pulsatile tinnitus and muscular tinnitus, which are forms of rhythmic tinnitus, are relatively rare. Pulsatile tinnitus may also be known as pulse-synchronous tinnitus. Properly identifying and distinguishing these less common forms of tinnitus is important because the underlying cause of pulsatile or muscular tinnitus can often be identified and treated.
Note however that tinnitus nearly always consists of fairly simple sounds -- for example, hearing someone talking that no one else can hear would not ordinarily be called tinnitus -- this would be called an auditory hallucination. Musical hallucinations in patients without psychiatric disturbance is most often described in older persons, years after hearing loss.
Tinnitus can be perceived in one or both ears or in the head. It is the description of a noise inside a person’s head in the absence of auditory stimulation. The noise can be described in many different ways. It is usually described as a ringing noise but, in some patients, it takes the form of a high-pitched whining, electric buzzing, hissing, humming, tinging or whistling sound or as ticking, clicking, roaring, "crickets" or "tree frogs" or "locusts (cicadas)", tunes, songs, beeping, sizzling, sounds that slightly resemble human voices or even a pure steady tone like that heard during a hearing test.[4] It has also been described as a "whooshing" sound because of acute muscle spasms, as of wind or waves.[7][not in citation given] Tinnitus can be intermittent or continuous: in the latter case, it can be the cause of great distress. In some individuals, the intensity can be changed by shoulder, head, tongue, jaw or eye movements.[8] Most people with tinnitus have some degree of hearing loss.[9]

Although there’s no proven cure for tinnitus, there are treatments that help make it easier to ignore. For example, you can wear devices in your ear(s) that produce soothing therapeutic noises to shift your focus away from the tinnitus. Other devices produce constant, soft noise to mask the tinnitus. Tinnitus sufferers who also have hearing loss sometimes find relief simply by wearing properly fitted hearing aids.


One group of 247 patients received standard (usual) care for tinnitus. This included audiological checks, counselling, prescription of a hearing aid if indicated, prescription of a “masker” if requested by the patient (a device that generates neutral sounds to distract from the noise of the tinnitus), and counselling from social workers when required.
Other potential sources of the sounds normally associated with tinnitus should be ruled out. For instance, two recognized sources of high-pitched sounds might be electromagnetic fields common in modern wiring and various sound signal transmissions. A common and often misdiagnosed condition that mimics tinnitus is radio frequency (RF) hearing, in which subjects have been tested and found to hear high-pitched transmission frequencies that sound similar to tinnitus.[71][72]
Masking Devices. Similar to the white noise machines listed above, there are now masking devices that can be worn in the ear, just like a hearing aid, that do almost the same thing. They produce low-level white noise that can suppresses your tinnitus symptoms by training your brain to focus on them instead of the ringing in your ears. These are perfect if you can’t always have a white noise machine running near you.
Age-Related Hearing Loss: Also known as presbycusis, age-related hearing loss results from the cumulative effect of aging on hearing. This permanent, progressive, and sensorineural condition is most pronounced at higher frequencies. It commonly impacts people over the age of 50, as all people begin to lose approximately 0.5% of the inner ear’s hair cells annually starting at age 40.
No matter what the cause, the condition interrupts the transmission of sound from the ear to the brain. Some of the neural circuits no longer receive signals. Strangely, this does not cause hearing loss. Instead, when neural circuits don’t receive stimulation, they react by chattering together, alone at first and then synchronous with each other. Once the nerve cells become hyperactive and occur at the same time, they simulate a tone the brain “hears” as tinnitus. Analogous to a piano, the broken “keys” create a permanent tone without a pianist playing the keys.
Although mitochondrial DNA variants are thought to predispose to hearing loss, a study of polish individuals by Lechowicz et al, reported that "there are no statistically significant differences in the prevalence of tinnitus and its characteristic features between HL patients with known HL mtDNA variants and the general Polish population." This would argue against mitochondrial DNA variants as a cause of tinnitus, but the situation might be different in other ethnic groups.

Supporting the idea that central reorganization is overestimated as "the" cause of tinnitus, a recent study by Wineland et al showed no changes in central connectivity of auditory cortex or other key cortical regions (Wineland et al, 2012). Considering other parts of the brain, Ueyama et al (2013) reported that there was increased fMRI activity in the bilateral rectus gyri, as well as cingulate gyri correlating with distress. Loudness was correlated with values in the thalamus, bilateral hippocampus and left caudate. In other words, the changes in the brain associated with tinnitus seem to be associated with emotional reaction (e.g. cingulate), and input systems (e.g. thalamus). There are a few areas whose role is not so obvious (e.g. caudate). This makes a more sense than the Wineland result, but of course, they were measuring different things. MRI studies related to audition or dizziness must be interpreted with great caution as the magnetic field of the MRI stimulates the inner ear, and because MRI scanners are noisy.


This content is strictly the opinion of Dr. Josh Axe and is for informational and educational purposes only. It is not intended to provide medical advice or to take the place of medical advice or treatment from a personal physician. All readers/viewers of this content are advised to consult their doctors or qualified health professionals regarding specific health questions. Neither Dr. Axe nor the publisher of this content takes responsibility for possible health consequences of any person or persons reading or following the information in this educational content. All viewers of this content, especially those taking prescription or over-the-counter medications, should consult their physicians before beginning any nutrition, supplement or lifestyle program.
Counseling helps you learn how to live with your tinnitus. Most counseling programs have an educational component to help you understand what goes on in the brain to cause tinnitus. Some counseling programs also will help you change the way you think about and react to your tinnitus. You might learn some things to do on your own to make the noise less noticeable, to help you relax during the day, or to fall asleep at night.
Avoid a too-quiet bedroom. People with tinnitus may find it easier to sleep in a less quiet bedroom, and may benefit from white noise or other sleep-friendly sounds that help mask and minimize their tinnitus. To my patients who are looking to introduce soothing sounds to their sleep environment, I recommend the iHome Zenergy Sleep System, which combines relaxing sounds with aromatherapy and sleep-promoting light therapy.
Medication. Some medications are known to be ototoxic while others list tinnitus as a side effect without causing permanent damage to the ear structures. New medications come out so often that it is difficult to maintain an up to date listing; another option, if you are experiencing tinnitus and are curious if it could be your medication, is to talk to your pharmacist or look up your specific prescriptions online through a website such as www.drugs.com. You should never stop a medication without consulting with your physician, even if you think it may be contributing to your tinnitus.
We conducted a randomized, double-blind, placebo-controlled trial investigating the effects of the customized music-based sound therapy for reducing tinnitus. Participants (N = 50) who suffered from tinnitus were randomly allocated (with 1:1 ratio) to the treatment and placebo groups with assessments at baseline, 3, 6, and 12 months. The primary outcome was the differences in mean scores of the THI compared at four time intervals. Independent and paired samples t-tests were conducted to compare THI scores between and within groups, respectively.
Acoustic Neural Stimulation. This relatively new treatment has shown to be effective in reducing, and in some cases eliminating, symptoms in patients whose tinnitus just won’t go away or is very loud. The treatment utilizes a device small enough to fit into the palm of your hand that delivers a broadband acoustical signal embedded in special music you can listen to via headphones. The treatment eventually desensitizes you to the ringing in your ears by stimulating changes in the neural circuits in your brain.
Tinnitus affects males and females in equal numbers. It can affect individuals of any age, even children. Tinnitus, collectively, is a very common condition and estimated to affect approximately 10% of the general population. Rhythmic tinnitus occurs far less frequently than non-rhythmic tinnitus, accounting for approximately 1% of all cases of tinnitus and is considered relatively rare in the general population. The exact prevalence or incidence of rhythmic tinnitus is unknown. Rhythmic tinnitus due to pseudotumor and sinus wall anomalies is found most commonly in overweight women in their 3rd to 6th decade of life. The onset of tinnitus can be abrupt or develop slowly over time.
Why is tinnitus so disruptive to sleep? Often, it’s because tinnitus sounds become more apparent at night, in a quiet bedroom. The noises of daily life can help minimize the aggravation and disruptiveness of tinnitus sounds. But if your bedroom is too quiet, you may perceive those sounds more strongly when you try to fall asleep—and not be able to drift off easily.
Like Shore and Kilgard’s work, most of the promising research on tinnitus has to do with stimulating or altering the brain’s hyperactivity in ways that reduce tinnitus. Some studies have shown electromagnetic brain stimulation — using either invasive or noninvasive techniques, including procedures that involve surgically implanted electrodes or scalp electrodes — may help reverse a patient’s tinnitus. (6) While none of these treatment options are currently available, all have shown some success in treating the condition.
The accepted definition of chronic tinnitus, as compared to normal ear noise experience, is five minutes of ear noise occurring at least twice a week.[50] However, people with chronic tinnitus often experience the noise more frequently than this and can experience it continuously or regularly, such as during the night when there is less environmental noise to mask the sound.
Now make your toes as tight as you can, really scrunch them up. Hold them like this for a moment – and relax. Now do the same with your ankles, then your calf muscles, your thighs… work all the way up your body to your head, making sure you tense, hold for a moment, and then release the tension. Once you’ve done this with your whole body, focus again on your breathing – notice the rhythm, it should be even and calm.
Various techniques can help make tinnitus tolerable, although the ability to tolerate it varies from person to person. Many people find that background sound helps mask the tinnitus and helps them fall asleep. Some people play background music. Other people use a tinnitus masker, which is a device worn like a hearing aid that produces a constant level of neutral sounds. For the profoundly deaf, an implant in the cochlea (the organ of hearing) may reduce tinnitus but is only done for people with severe to profound hearing loss in both ears. If these standard techniques are not helpful, people may want to seek treatment in clinics that specialize in the treatment of tinnitus.
Try meditation and relaxation techniques. Stress can aggravate tinnitus, so take deep breaths and relax if you start to feel anxious, worried, or overwhelmed. Count to 4 as you breathe in slowly, hold your breath for a 4 count, then count to 4 as you slowly exhale. Continue to control your breathing for 1 to 2 minutes, or until you feel at ease.[10]
Antibiotics, including erythromycin, neomycin, polymysxin B and vancomycin, as well as cancer medications, including mechlorethamine and vincristine, and water pills, including bumetanide, furosemide or ethacrynic acid all have the ability to cause or worsen tinnitus. Some patients will experience tinnitus after using antidepressants or quinine medications.
According to the American Tinnitus Association, this complex audiological and neurological condition is experienced by nearly 50 million Americans. (2) Older adults, men, people who smoke or use drugs, and those with a history of ear infections or cardiovascular disease have the highest risk for developing tinnitus. Most experts believe that it’s not a disorder itself, but rather one symptom of another underlying disorder that affects auditory sensations and nerves near the ears. However, there are tinnitus treatment options out there to treat those symptoms.
Pulsatile tinnitus is a rare type of tinnitus that sounds like a rhythmic pulsing in the ear, usually in time with your heartbeat. A doctor may be able to hear it by pressing a stethoscope against your neck or by placing a tiny microphone inside the ear canal. This kind of tinnitus is most often caused by problems with blood flow in the head or neck. Pulsatile tinnitus also may be caused by brain tumors or abnormalities in brain structure.

Many of us experience tinnitus every once in a while. If you’re exposed to extremely loud noise, or leave a noisy environment for a quiet one, you may notice a temporary buzzing or ringing in your ear. Maybe you’ve been near loud construction—like a jackhammer, or stepped out of a loud action movie or music concert to a quiet lobby or street. (Be aware: even a single exposure to very loud noise can do damage to your hearing, and increase your risk for tinnitus.)
When tinnitus is unexpected and unwelcomed, it can lead to a negative reaction to the tinnitus. This can create a vicious cycle. When tinnitus is perceived, it can prompt emotions, including frustration, fear, unhappiness, etc.  These can, in turn, cause physical reactions such as anxiety and stress.  This reinforces the tinnitus and perpetuates the cycle. 
No matter what the cause, the condition interrupts the transmission of sound from the ear to the brain. Some of the neural circuits no longer receive signals. Strangely, this does not cause hearing loss. Instead, when neural circuits don’t receive stimulation, they react by chattering together, alone at first and then synchronous with each other. Once the nerve cells become hyperactive and occur at the same time, they simulate a tone the brain “hears” as tinnitus. Analogous to a piano, the broken “keys” create a permanent tone without a pianist playing the keys.
Experts recommend that patients with severe tinnitus become educated about tinnitus and how they best deal with its symptoms. This can include learning about biofeedback in order to control stress and your reaction to tinnitus sounds, talking with a counselor, or joining a support group. Coping strategies are most useful for managing emotional side effects of tinnitus, such as anxiety, trouble sleeping, lack of focus and depression.
Meniere’s disease isn’t directly connected to tinnitus, but people with Meniere’s often experience it, at least temporarily. Meniere's disease is an inner ear disease that typically only affects one ear. This disease can cause pressure or pain in the ear, severe cases of dizziness or vertigo and a ringing or roaring tinnitus. While Meniere’s isn’t fully understood, it appears that several relief options for tinnitus can also help with this disease. Patients are often advised to reduce stress and lower their consumption of caffeine and sodium.
×