Shelly-Anne Li is the VP of clinical research and operations at Sound Options Tinnitus Treatments Inc. As a research methodology consultant for various projects, she brings expertise in health research methods, as well as experience from conducting multi-site randomized controlled trials, mixed methods studies and qualitative research. Shelly-Anne Li is currently a PhD candidate at University of Toronto, and obtained her MSc (health sciences) from McMaster University.
Tinnitus is the name for hearing a sound that is not physically present in the environment. Some researchers have also described tinnitus as a “phantom auditory perception.” People with tinnitus most often describe it as ringing, buzzing, cricket sounds, humming, and whooshing, although many other descriptions have been used. To hear some sound samples access the American Tinnitus Association website, where they have put together files of different manifestations of tinnitus to listen to for education purposes.
Health care professionals who incline to offer patients an option or strategy to deal with tinnitus are confronted with the variability inherent to this disorder.5 The cause of tinnitus can vary, although people who experience tinnitus have usually first developed hearing loss due to ageing or from exposure to loud noise that caused peripheral auditory damage. In fact, the number of tinnitus sufferers that develop the constant ringing due to hearing loss may be even higher than thought, as some tinnitus sufferers only appear to have normal hearing when thresholds at frequencies below 8 kHz are measured. Less frequently, tinnitus may also occur after a head or neck injury, or due to the presence of an acoustic neuroma. Certain medications may also contribute to the development of tinnitus through effects on hair cells in the inner ear or via mechanisms that are not yet well understood.6 This variety in cause has been the first part of the challenge in developing a “cure” or effective treatment for tinnitus. However, even for the largest group of tinnitus sufferers (those who may develop tinnitus due to hearing damage), effective treatments have been hard to come by.
Tinnitus affects males and females in equal numbers. It can affect individuals of any age, even children. Tinnitus, collectively, is a very common condition and estimated to affect approximately 10% of the general population. Rhythmic tinnitus occurs far less frequently than non-rhythmic tinnitus, accounting for approximately 1% of all cases of tinnitus and is considered relatively rare in the general population. The exact prevalence or incidence of rhythmic tinnitus is unknown. Rhythmic tinnitus due to pseudotumor and sinus wall anomalies is found most commonly in overweight women in their 3rd to 6th decade of life. The onset of tinnitus can be abrupt or develop slowly over time.
Cochlear implants are sometimes used in people who have tinnitus along with severe hearing loss. A cochlear implant bypasses the damaged portion of the inner ear and sends electrical signals that directly stimulate the auditory nerve. The device brings in outside sounds that help mask tinnitus and stimulate change in the neural circuits. Read the NIDCD fact sheet Cochlear Implants for more information.
Repeated loud noise exposure can be a cause of tinnitus as well as hearing loss. Loud music may cause short term symptoms, but repeated occupational exposure (for example, musicians, factory and construction workers) requires less intense sound levels to cause potential hearing damage leading to tinnitus. Minimizing sound exposure, therefore, decreases the risk of developing tinnitus. Sound protection equipment, like acoustic ear-muffs, may be appropriate at work and at home when exposed to loud noises.
The patients were assessed at the start of the study for their hearing ability and the severity of their tinnitus. The researchers assessed the degree of severity using established questionnaires, which looked at health-related quality of life, the psychological distress associated with tinnitus and how far it impaired their functioning. Using this information, researchers divided participants into four groups ranked on the severity of their condition.
To answer your question about NAC (N-acetyl-L-cysteine), I’ve seen little evidence suggesting that is effective for tinnitus. Instead – though the research is very limited – multiple anecdotal reports describe success with the herb ginkgo biloba. Try taking two tablets of standardized extract of ginkgo three times a day with meals (no more than a total dose of 240 mg a day). Ginkgo may work by increasing blood circulation to the head and neck. Give it at least a two-month trial. You might also explore cranial therapy, a gentle manipulative technique performed by osteopathic physicians. This approach seems to take the pressure or irritation off the auditory nerves. If high blood pressure is responsible for your tinnitus, try to get that under control through diet, exercise, and weight loss or medication if necessary.

This tinnitus treatment we developed makes use of software that customizes a music-based therapy for each individual tinnitus sufferer. The software achieves this by incorporating a computational model of the “tinnitus brain.” This model captures changes in the auditory brain which may be causing the tinnitus.5,7 We do this by taking into account the individual’s audiogram and a pitch match of their tinnitus, which generates a tinnitus profile unique to him or her. The software then uses the model to predict how each music track can be altered spectrally to reduce tinnitus for that specific tinnitus profile. Delivering the treatment using headphones that could produce high frequencies (above 10–12 kHz) was an integral part of treatment effectiveness. With such headphones, the treatment could work by taking advantage of the same kind of brain plasticity that may contribute to the person's tinnitus in the first place without being limited by a lack of high-frequency sounds.8 By incorporating the latest tinnitus research into our software, we developed a treatment approach that provides greater promise in treating tinnitus than existing treatments with a one-size-fits-all approach.
An ultrasound is another test that may be used to aid in the diagnosis of tinnitus. An ultrasound uses reflected high-frequency sound waves and their echoes to create images of structures within the body. An ultrasound can reveal how blood flows within vessels, but is only useful for accessible vessels. It is not helpful for blood vessels within the skull.

Patulous Eustachian tubes can be associated with tinnitus. The Eustachian tube is a small canal that connects the middle ear to the back of the nose and upper throat. The Eustachian tube normally remains closed. In individuals with a patulous Eustachian tube, the tube is abnormally open. Consequently, talking, chewing, swallowing and other similar actions can cause vibrations directly onto the ear drum. For example, affected individuals may hear blowing sounds that are synchronized with breathing.
There are many different conditions and disorders that affect nerve channels leading to the ears, which can cause someone to hear abnormal ringing or other sounds in their ears. These conditions usually cause other symptoms at the same time (such as dizziness, hearing loss, headaches, facial paralysis, nausea and loss of balance), which doctors use as clues to uncover the underlying cause of tinnitus.
If your tinnitus is a symptom of an underlying medical condition, the first step is to treat that condition. But if the tinnitus remains after treatment, or if it results from exposure to loud noise, health professionals recommend various non-medical options that may help reduce or mask the unwanted noise (See Masking Devices below). Sometimes, tinnitus goes away spontaneously, without any intervention at all. It should be understood, however, that not all tinnitus can be eliminated or reduced, no matter the cause.
Exposure to loud noise: Loud noise exposure is a very common cause of tinnitus today, and it often damages hearing as well. Unfortunately, many people are unconcerned about the harmful effects of excessively loud noise from firearms, high intensity music, or other sources. Twenty-six million American adults have suffered noise-induced hearing loss, according to the NIDCD.
While there may be a wide range of causes, an important underlying factor for the development of tinnitus is brain plasticity.5,7 This property allows the brain to change and adapt, and it is essential to how we learn. Unfortunately, in some cases, such as with hearing loss, the auditory part of the brain may be altered as brain plasticity tries to compensate for the abnormal auditory inputs. This response leads to changes in brain activity in the auditory system (e.g., the auditory cortex) that can create a phantom percept: tinnitus. As such, while tinnitus may begin a problem at the auditory periphery, it persists because of changes throughout the auditory system. Treating tinnitus may require addressing both the initiator (e.g., hearing loss) and the driver (changes in the auditory brain).
It is very well accepted that tinnitus often is "centralized" -- while it is usually initiated with an inner ear event, persistent tinnitus is associated with changes in central auditory processing (Adjamian et al, 2009). Sometimes this idea is used to put forth a "therapeutic nihilism" -- suggesting that fixing the "cause" -- i.e. inner ear disorder -- will not make the tinnitus go away.   This to us seems overly simplistic -- while it is clear that the central nervous system participates in perception of sounds, and thus must be a participant in the "tinnitus" process, we think that it is implausible that in most cases that there is not an underlying "driver" for persistent tinnitus.
Try meditation and relaxation techniques. Stress can aggravate tinnitus, so take deep breaths and relax if you start to feel anxious, worried, or overwhelmed. Count to 4 as you breathe in slowly, hold your breath for a 4 count, then count to 4 as you slowly exhale. Continue to control your breathing for 1 to 2 minutes, or until you feel at ease.[10]
The patients were assessed at the start of the study for their hearing ability and the severity of their tinnitus. The researchers assessed the degree of severity using established questionnaires, which looked at health-related quality of life, the psychological distress associated with tinnitus and how far it impaired their functioning. Using this information, researchers divided participants into four groups ranked on the severity of their condition.
Shore says her therapy isn’t for everyone — at least not yet. So far, she’s only treated patients who have a specific form of tinnitus that changes in intensity or pitch when a person moves certain parts of her body. For example, some tinnitus sufferers find the sound in their ears lessens when they clench their teeth or open their mouths wide. This suggests that some touch inputs can influence the tinnitus, Shore says. (Roughly two-thirds of tinnitus patients have this form of the condition, she adds.)

The content of the website and databases of the National Organization for Rare Disorders (NORD) is copyrighted and may not be reproduced, copied, downloaded or disseminated, in any way, for any commercial or public purpose, without prior written authorization and approval from NORD. Individuals may print one hard copy of an individual disease for personal use, provided that content is unmodified and includes NORD’s copyright.

Other causes of tinnitus include middle ear infections, disorders that block the ear canal (such as an external ear infection [external otitis], excessive ear wax, or foreign bodies), problems with the eustachian tube (which connects the middle ear and the back of the nose) due to allergies or other causes of obstruction, otosclerosis (a disorder of excess bone growth in the middle ear), and temporomandibular disorders. An uncommon but serious cause is an acoustic neuroma, a noncancerous (benign) tumor of part of the nerve leading from the inner ear.

It’s the same mechanism that’s happening in people who feel a phantom limb sensation after losing a limb, explains Susan Shore, PhD, a professor of otolaryngology, molecular physiology, and biomedical engineering at the University of Michigan in Ann Arbor. With tinnitus the loss of hearing causes specific brain neurons to increase their activity as a way of compensating, she explains. “These neurons also synchronize their activity as they would if there were a sound there, but there is no external sound,” she adds.
No two patients and no two tinnitus cases are alike. As such, the “best” treatment option is often contingent on an array of factors unique to each patient. Moreover, successful management of tinnitus may require overlapping layers of treatment. ATA recommends that patients work with their healthcare provider(s) to identify and implement the treatment strategy that is best suited to their particular needs.
This personalized solution offers a selection of tinnitus relief sounds to support common management approaches. The flexible programming provides sound stimulation through select auditory options that can ease the effects of tinnitus. The sounds offer a variety of customized options and are used in conjunction with tinnitus retraining therapy to provide instructional counseling.
Participants were contacted to complete questionnaires (including THI) for the three-month assessment. A 30-minute individual phone interview with each participant was also conducted to explore their experiences with using the music package on a daily basis, and to further understand how the music package was affecting their tinnitus. At present, 27 participants have been interviewed to obtain the results presented here.
Ototoxic drugs can also cause subjective tinnitus, as they may cause hearing loss, or increase the damage done by exposure to loud noise. Those damages can occur even at doses that are not considered ototoxic.[30] Over 260 medications have been reported to cause tinnitus as a side effect.[31] In many cases, however, no underlying cause could be identified.[2]
This tinnitus treatment we developed makes use of software that customizes a music-based therapy for each individual tinnitus sufferer. The software achieves this by incorporating a computational model of the “tinnitus brain.” This model captures changes in the auditory brain which may be causing the tinnitus.5,7 We do this by taking into account the individual’s audiogram and a pitch match of their tinnitus, which generates a tinnitus profile unique to him or her. The software then uses the model to predict how each music track can be altered spectrally to reduce tinnitus for that specific tinnitus profile. Delivering the treatment using headphones that could produce high frequencies (above 10–12 kHz) was an integral part of treatment effectiveness. With such headphones, the treatment could work by taking advantage of the same kind of brain plasticity that may contribute to the person's tinnitus in the first place without being limited by a lack of high-frequency sounds.8 By incorporating the latest tinnitus research into our software, we developed a treatment approach that provides greater promise in treating tinnitus than existing treatments with a one-size-fits-all approach.
Another way of splitting up tinnitus is into objective and subjective. Objective tinnitus can be heard by the examiner. Subjective cannot. Practically, as there is only a tiny proportion of the population with objective tinnitus, this method of categorizing tinnitus is rarely of any help. It seems to us that it should be possible to separate out tinnitus into inner ear vs everything else using some of the large array of audiologic testing available today. For example, it would seem to us that tinnitus should intrinsically "mask" sounds of the same pitch, and that this could be quantified using procedures that are "tuned" to the tinnitus.
We use cookies and similar technologies to improve your browsing experience, personalize content and offers, show targeted ads, analyze traffic, and better understand you. We may share your information with third-party partners for marketing purposes. To learn more and make choices about data use, visit our Advertising Policy and Privacy Policy. By clicking “Accept and Continue” below, (1) you consent to these activities unless and until you withdraw your consent using our rights request form, and (2) you consent to allow your data to be transferred, processed, and stored in the United States.
Tinnitus is believed to be caused by inner ear cell damage. Cilia in your inner ear move in relation to the pressure of sound waves. This triggers these cells to release an electrical signal through a nerve from your ear (auditory nerve) to your brain. Your brain interprets these signals as sound. If the hairs inside your inner ear are bent or broken, they can "leak" random electrical impulses to your brain, causing tinnitus.
Other potential sources of the sounds normally associated with tinnitus should be ruled out. For instance, two recognized sources of high-pitched sounds might be electromagnetic fields common in modern wiring and various sound signal transmissions. A common and often misdiagnosed condition that mimics tinnitus is radio frequency (RF) hearing, in which subjects have been tested and found to hear high-pitched transmission frequencies that sound similar to tinnitus.[71][72]

There is a growing body of evidence suggesting that some tinnitus is a consequence of neuroplastic alterations in the central auditory pathway. These alterations are assumed to result from a disturbed sensory input, caused by hearing loss.[28] Hearing loss could indeed cause a homeostatic response of neurons in the central auditory system, and therefore cause tinnitus.[29]


The similarities between chronic pain and tinnitus have led researchers to develop a mindfulness-based tinnitus stress reduction (MBTSR) program. The results of a pilot study, which were published in The Hearing Journal, found that participants of an eight-week MBTSR program experienced significantly altered perceptions of their tinnitus. This included a reduction in depression and anxiety.
Objects or insects in the ear can be placed in the ear by patients themselves, or an insect crawling in the ear. Ear wax can also cause ear problems if Q-tips are overused to clean the ears. Symptoms of an object in the ear are inflammation and sensitivity, redness, or discharge of pus or blood. When to seek medical care for an object or insect in the ear is included in the article information.
Diseases, illnesses and injuries. There are several medical conditions that can cause tinnitus. These include Meniere’s disease, temporomandibular joint disorders (TMJ), head or neck injuries, brain tumors, etc. Most people don’t know if they have Meniere’s disease until properly diagnosed. This RARE disease brings on dizziness, tinnitus and ear pressure that can last for a short period of time and then disappears. TMJ causes pain in your jaw muscles. With TMJ, you’ll often hear a clicking noise when chewing. TMJ has shown to influence your chances of developing tinnitus, so be sure to treat the condition in order to reduce your chances of getting tinnitus. Head and neck injuries have also been shown to cause tinnitus, so always wear your helmet when you’re out biking and drive safely when you’re in your car.Believe it or not, but tinnitus can be caused by something as simple as an ear infection. Don’t take ear infections lightly they can be devastating at any age. Brain tumors, while equally as rare as Meniere’s disease, can also generate tinnitus symptoms. While you can alleviate your tinnitus immediately with an over the counter tinnitus treatment, you should also seek the help of a tinnitus specialist in your area to determine what the underlying cause of your tinnitus is.
Assessment of psychological processes related to tinnitus involves measurement of tinnitus severity and distress (i.e., nature and extent of tinnitus-related problems), measured subjectively by validated self-report tinnitus questionnaires.[18] These questionnaires measure the degree of psychological distress and handicap associated with tinnitus, including effects on hearing, lifestyle, health and emotional functioning.[62][63][64] A broader assessment of general functioning, such as levels of anxiety, depression, stress, life stressors and sleep difficulties, is also important in the assessment of tinnitus due to higher risk of negative well-being across these areas, which may be affected by or exacerbate the tinnitus symptoms for the individual.[65] Overall, current assessment measures are aimed to identify individual levels of distress and interference, coping responses and perceptions of tinnitus in order to inform treatment and monitor progress. However, wide variability, inconsistencies and lack of consensus regarding assessment methodology are evidenced in the literature, limiting comparison of treatment effectiveness.[66] Developed to guide diagnosis or classify severity, most tinnitus questionnaires have been shown to be treatment-sensitive outcome measures.[67]

Some persons with severe TMJ (temporomandibular joint) arthritis have severe tinnitus. Generally these persons say that there is a "screeching" sound. This is another somatic tinnitus. TMJ is extremely common -- about 25% of the population. The exact prevalence of TMJ associated tinnitus is not established, but presumably it is rather high too. Having TMJ increases the odds that you have tinnitus too, by about a factor of 1.6-3.22 (Park and Moon, 2014; Lee et al, 2016). This is the a large risk factor for tinnitus, similar to the risk from hearing loss (see table above).
But one of the awesome powers of the human brain is its adaptability. “It can learn and reorganize itself every time you practice something new,” Kilgard says. His research, including a study published in February 2014 in the journal Neuromodulation, has shown this adaptability may be key to helping the brain “turn down” the hyperactivity that can lead to tinnitus, he says. (4)
Paquette et al (2017) reported a prospective study of 166 patients who had brain surgery involving removal of the medial temporal lobe. The prevalence of tinnitus increased from approximately from 10 to 20% post surgery. This study did not include a control -- a natural question would be -- suppose a different part of the brain were removed. One would also think that drilling of the skull from any source might increase tinnitus. We are presently dubious that the medial temporal lobe suppresses tinnitus.
Tinnitus can be extremely frustrating and can leave you feeling overwhelmed and unsure about your next steps. Remember that you are not alone - tinnitus, while not well-understood, is common. Make an appointment with a hearing care professional near you, preferably one who specializes in tinnitus treatment. Be prepared to discuss your symptoms in detail so you can get relief and regain your quality of life. 
Español: curar el tinnitus (zumbido de oídos), Deutsch: Tinnitus heilen, 中文: 治疗耳鸣, Italiano: Curare l’Acufene, Русский: вылечить тиннитус, Français: soigner des acouphènes, Português: Curar Zumbido no Ouvido, Bahasa Indonesia: Mengobati Tinitus, Nederlands: Tinnitus genezen, Čeština: Jak vyléčit tinnitus, العربية: علاج طنين الأذن, Tiếng Việt: Trị ù tai, 한국어: 이명을 치료하는 방법, हिन्दी: कर्णनाद (टिनिटस) का इलाज़ करें, 日本語: 耳鳴りの治療
One of the big problems associated with curing tinnitus, experts say, is that it’s really a symptom of multiple conditions, as opposed to being a single condition with a predictable trigger. In fact, more than 200 different conditions — problems ranging from hearing loss to head or neck trauma — have been linked with tinnitus, which makes it a real bear to try to stop. (3)

Some patients choose to get involved in “tinnitus retraining,” which involves wearing a device in the ears that provides soothing music or noise, along with undergoing counseling. The goal is to help your body and brain learn to get accustomed to tinnitus noise, which reduces your negative reactions to unwanted sounds. Support and counseling during the process can be helpful for reducing anxiety. Researchers are now learning more about the benefits of coherent cognitive behavioral therapy interventions to help treat distress associated with tinnitus. (3)


A common cause of tinnitus is inner ear hair cell damage. Tiny, delicate hairs in your inner ear move in relation to the pressure of sound waves. This triggers cells to release an electrical signal through a nerve from your ear (auditory nerve) to your brain. Your brain interprets these signals as sound. If the hairs inside your inner ear are bent or broken, they can "leak" random electrical impulses to your brain, causing tinnitus.
×