A large, 2014 study of almost 14,000 people found obstructive sleep apnea was linked to significantly higher rates of hearing impairment and hearing loss. Scientists think one reason for this is changes to blood flow to the ear that result in inflammation. (We know that sleep apnea causes changes to circulation and weakens blood flow to some areas of the body, including the brain.) A related factor? People with sleep apnea are at greater risk for high blood pressure, and high blood pressure can exacerbate hearing loss, according to research.
There seems to be a two-way-street relationship between tinnitus and sleep problems. The symptoms of tinnitus can interfere with sleeping well—and poor sleep can make tinnitus more aggravating and difficult to manage effectively. In the same study that found a majority of people with tinnitus had a sleep disorder, the scientists also found that the presence of sleep disorders made tinnitus more disruptive.

Changing Prescriptions, OTC Medications and Food Additives. Sometimes the cause of tinnitus is a prescription (such as an antibiotic), an over the counter medication or a food additive. As an example, two very common prescriptions that have been shown to cause tinnitus are quinine and chloroquine, which are both used to prevent malaria. Certain diuretics and cancer medications can also cause tinnitus. Even something as simple as OTC aspirin can generate tinnitus in some people. The food additives NutraSweet, Splenda and Aspartame have all been linked to tinnitus, and a whole host of other side effects, in clinical studies. These man-made food additives should be eliminated from your diet completely. If any of your medications are causing your tinnitus, your doctor may recommend stopping, reducing or switching them out for other medicines to see if that helps cure your tinnitus.
The results were calculated using a measure called “effect size”, which is a way of quantifying the size of the difference between the two groups. For the difference in quality of life scores between groups, the effect size was calculated to be 0.24. This can be interpreted as a “small” effect. In other words, treatment including CBT gave a small improvement in quality of life compared with usual care.
Demographic variables (age, sex, type of tinnitus) and baseline THI scores of placebo (n = 16) and treatment (n = 11) groups did not significantly differ from one another at the start of the study. At 3 months, participants in the treatment group reported significantly lower scores on the THI when compared to the placebo group (p < .05). The treatment group also showed an 11-point drop in THI scores when comparing baseline and 3 months (p < .05; please see Figure 2). THI scores for the placebo group comparing both time points were non-significant. Past studies have indicated that the minimum change in the THI score to be considered clinically significant is a drop of 6 to 7 points.9 As such, the results of our clinical study suggest that tinnitus and its related symptoms can produce a clinically significant reduction in tinnitus within the first 3 months using the personalized music-based therapy.
Avoid a too-quiet bedroom. People with tinnitus may find it easier to sleep in a less quiet bedroom, and may benefit from white noise or other sleep-friendly sounds that help mask and minimize their tinnitus. To my patients who are looking to introduce soothing sounds to their sleep environment, I recommend the iHome Zenergy Sleep System, which combines relaxing sounds with aromatherapy and sleep-promoting light therapy.
Tinnitus retraining therapy is a form of treatment that tries to retrain the nerve pathways associated with hearing that may allow the brain to get used to the abnormal sounds. Habituation allows the brain to ignore the tinnitus noise signal, and it allows the person to become unaware that it is present unless they specifically concentrate on the noise. This treatment involves counseling and wearing a sound generator. Audiologists and otolaryngologists often work together in offering this treatment.

Tinnitus matching is helpful to identify the frequency and intensity of the tinnitus. This is a simple procedure in which the audiologist adjusts a sound until a patient indicates that it is the same as their tinnitus.  Most patients match their tinnitus to the region of their hearing loss (Konig et al, 2006; Mahboubi et al, 2012). Unfortunately, the "gap detection test", does not work to confirm tinnitus in humabs (Boyen et al, 2015).

Oticon Tinnitus SoundSupport works by adding sound to the buzzing, hissing, or roaring you already hear. This may seem peculiar, but in fact, the relief sounds (which are dynamic and soothing) can mix with and distract you from those bothersome noises, giving you control over your condition. The flexible program includes a variety of relief sounds that can ease the effects of tinnitus. Your audiologist can personalize the sounds to your needs and preferences, and they can be used alongside Tinnitus Retraining Therapy for instruction and support.
It’s been found that exposure to very loud noises can contribute to early hearing loss and ear problems. Loud sounds can include those from heavy machinery or construction equipment (such as sledge hammers, chain saws and firearms). Even gun shots, car accidents, or very loud concerts and events can trigger acute tinnitus, although this should go away within a couple days in some cases. (5)

Try meditation and relaxation techniques. Stress can aggravate tinnitus, so take deep breaths and relax if you start to feel anxious, worried, or overwhelmed. Count to 4 as you breathe in slowly, hold your breath for a 4 count, then count to 4 as you slowly exhale. Continue to control your breathing for 1 to 2 minutes, or until you feel at ease.[10]
The degree of loudness or annoyance caused by tinnitus varies greatly from one individual to another. Loudness and annoyance do not always covary. An individual with loud tinnitus may not be troubled, while an individual with soft tinnitus may be debilitated. Most individuals with subjective tinnitus have hearing loss that shows up in a standard clinical audiogram. Tinnitus can sometimes worsen or sometimes improve over time.
Some tinnitus sufferers have experienced relief through hearing aids, but studies indicate that such benefits are limited to those with low-frequency tinnitus.8 For those with a tinnitus pitch above 5–6 kHz or those with a hissing or buzzing tinnitus, the benefits of hearing aids are more limited or even nonexistent. This makes sense from a neuroscience point of view, as the hearing aid will typically not be making up for hearing loss at frequencies above 6–8 kHz; this prevents any possible effects on tinnitus types that are caused by changes to higher frequency regions in the auditory system. While hearing aids are essential to improving the lives of the hearing impaired, they are not typically the best option for tinnitus; especially when used alone.
Unfortunately that means tinnitus is a very complicated condition that involves several systems of the body. The good news, though, is that as doctors and researchers have developed a better understanding of the mechanisms behind tinnitus, they’ve also been able to develop new and promising treatments that target the brain rather than the ear — and have more of a chance of actually reversing the problem.
Her most recent study, published in January 2018 in the journal Science Translational Medicine, showed success rates similar to Kilgard’s on 20 adult tinnitus patients. (5) People who underwent the therapy 30 minutes a day for one month reported about a 50 percent drop in the loudness of their tinnitus. More than half of the study participants also reported that their tinnitus bothered them less after the therapy, she says.
Tinnitus is not a disease in and of itself, but rather a symptom of some other underlying health condition. In most cases, tinnitus is a sensorineural reaction in the brain to damage in the ear and auditory system. While tinnitus is often associated with hearing loss, there are roughly 200 different health disorders that can generate tinnitus as a symptom. Below is a list of some of the most commonly reported catalysts for tinnitus.

Many people find that tinnitus causes frustration, stress, and even anger. And unfortunately, your exasperation and anxiety can seem to amplify the issue. Learning how to thoroughly relax can help you manage your tinnitus. Deep breathing, meditation, yoga, or music therapy may help in combination with sound therapy. You could also explore relaxing hobbies like gardening, painting, swimming, photography, knitting, reading, cooking, or other physical activities (walking, biking, etc.).
According to the American Tinnitus Association, this complex audiological and neurological condition is experienced by nearly 50 million Americans. (2) Older adults, men, people who smoke or use drugs, and those with a history of ear infections or cardiovascular disease have the highest risk for developing tinnitus. Most experts believe that it’s not a disorder itself, but rather one symptom of another underlying disorder that affects auditory sensations and nerves near the ears. However, there are tinnitus treatment options out there to treat those symptoms.
One of the big problems associated with curing tinnitus, experts say, is that it’s really a symptom of multiple conditions, as opposed to being a single condition with a predictable trigger. In fact, more than 200 different conditions — problems ranging from hearing loss to head or neck trauma — have been linked with tinnitus, which makes it a real bear to try to stop. (3)
Another example of somatic tinnitus is that caused by temperomandibular joint disorder. The temporomandibular joint (TMJ) is where the lower jaw connects to the skull, and is located in front of the ears. Damage to the muscles, ligaments, or cartilage in the TMJ can lead to tinnitus symptoms. The TMJ is adjacent to the auditory system and shares some ligaments and nerve connections with structures in the middle ear.
Like Shore and Kilgard’s work, most of the promising research on tinnitus has to do with stimulating or altering the brain’s hyperactivity in ways that reduce tinnitus. Some studies have shown electromagnetic brain stimulation — using either invasive or noninvasive techniques, including procedures that involve surgically implanted electrodes or scalp electrodes — may help reverse a patient’s tinnitus. (6) While none of these treatment options are currently available, all have shown some success in treating the condition.

Some people experience a sound that beats in time with their pulse, known as pulsatile tinnitus or vascular tinnitus.[40] Pulsatile tinnitus is usually objective in nature, resulting from altered blood flow, increased blood turbulence near the ear, such as from atherosclerosis or venous hum,[41] but it can also arise as a subjective phenomenon from an increased awareness of blood flow in the ear.[40] Rarely, pulsatile tinnitus may be a symptom of potentially life-threatening conditions such as carotid artery aneurysm[42] or carotid artery dissection.[43] Pulsatile tinnitus may also indicate vasculitis, or more specifically, giant cell arteritis. Pulsatile tinnitus may also be an indication of idiopathic intracranial hypertension.[44] Pulsatile tinnitus can be a symptom of intracranial vascular abnormalities and should be evaluated for irregular noises of blood flow (bruits).[45]
There are, however, excellent tools to help patients manage their condition; treatments that reduce the perceived intensity, omnipresence, and burden of tinnitus. These currently available treatments are not “cures” — they neither repair the underlying causes of tinnitus, nor eliminate the tinnitus signal in the brain. Instead, they address the attentional, emotional, and cognitive impact of tinnitus. They help patients live better, more fulfilling, and more productive lives, even if the perception of tinnitus remains.

^ Tyler RS, Pienkowski M, Roncancio ER, Jun HJ, Brozoski T, Dauman N, Dauman N, Andersson G, Keiner AJ, Cacace AT, Martin N, Moore BC (2014). "A review of hyperacusis and future directions: part I. Definitions and manifestations" (PDF). American Journal of Audiology. 23 (4): 402–19. doi:10.1044/2014_AJA-14-0010. PMID 25104073. Archived (PDF) from the original on May 9, 2018. Retrieved September 23, 2017.
Tinnitus is a symptom, not a disease. Most cases are due to damage to the microscopic endings of the sensory nerve in the inner ear, commonly from exposure to loud noise (as from amplified music or gunfire). Other causes include allergy, high or low blood pressure, a tumor, diabetes, thyroid dysfunction, and head or neck injury. In addition, some drugs, including aspirin and other anti-inflammatories, antibiotics, sedatives, and antidepressants can also cause tinnitus. If so, changing drugs or lowering the dosage usually helps.
An ultrasound is another test that may be used to aid in the diagnosis of tinnitus. An ultrasound uses reflected high-frequency sound waves and their echoes to create images of structures within the body. An ultrasound can reveal how blood flows within vessels, but is only useful for accessible vessels. It is not helpful for blood vessels within the skull.
Tinnitus is the hearing of sound when no external sound is present.[1] While often described as a ringing, it may also sound like a clicking, hiss or roaring.[2] Rarely, unclear voices or music are heard.[3] The sound may be soft or loud, low pitched or high pitched and appear to be coming from one ear or both.[2] Most of the time, it comes on gradually.[3] In some people, the sound causes depression or anxiety and can interfere with concentration.[2]
Generally, following the initial evaluation, individuals suspected of rhythmic tinnitus will undergo some form of specialized medical imaging. Individuals may undergo high resolution computed tomography (HRCT) or magnetic resonance angiography (MRA) to evaluate blood vessel abnormalities such as a vascular malformation that may be the cause of tinnitus. An HRCT scan can also be used to evaluate the temporal bone for sinus wall abnormalities and superior semicircular canal dehiscence. HRCT uses a narrow x-ray beam and advanced computer analysis to create highly detailed images of structures within the body such as blood vessels. An MRA is done with the same equipment use for magnetic resonance imaging (MRI). An MRI uses a magnetic field and radio waves to produce cross-sectional images of particular structures or tissues within the body. An MRA provides detailed information about blood vessels. In some cases, before the scan, an intravenous line is inserted into a vein to release a special dye (contrast). This contrast highlights the blood vessels, thereby enhancing the results of the scan.
As their name suggests, maskers conceal tinnitus through other sounds. They look similar to hearing aids, but they won’t enhance your hearing. In this way, they’re like band-aids, covering up the problem instead of actually solving it. In addition, some people find maskers frustrating, because they can soften important sounds, like speech. We do not recommend maskers for long-term use as they do not work in re-wiring the brain.
Tinnitus (pronounced ti-nə-təs or tə-nī-təs) is the conscious awareness of a sound in your ears or head not caused by an external noise. Too often associated with hearing loss, the fact is more than 50 percent of people living with tinnitus don’t have measurable hearing loss. Since there are many causes, tinnitus can be associated with a variety of health problems.
Tinnitus also could be the result of neural circuits thrown out of balance when damage in the inner ear changes signaling activity in the auditory cortex, the part of the brain that processes sound. Or it could be the result of abnormal interactions between neural circuits. The neural circuits involved in hearing aren’t solely dedicated to processing sound. They also communicate with other parts of the brain, such as the limbic region, which regulates mood and emotion.

Shore says her therapy isn’t for everyone — at least not yet. So far, she’s only treated patients who have a specific form of tinnitus that changes in intensity or pitch when a person moves certain parts of her body. For example, some tinnitus sufferers find the sound in their ears lessens when they clench their teeth or open their mouths wide. This suggests that some touch inputs can influence the tinnitus, Shore says. (Roughly two-thirds of tinnitus patients have this form of the condition, she adds.)


Tinnitus affects males and females in equal numbers. It can affect individuals of any age, even children. Tinnitus, collectively, is a very common condition and estimated to affect approximately 10% of the general population. Rhythmic tinnitus occurs far less frequently than non-rhythmic tinnitus, accounting for approximately 1% of all cases of tinnitus and is considered relatively rare in the general population. The exact prevalence or incidence of rhythmic tinnitus is unknown. Rhythmic tinnitus due to pseudotumor and sinus wall anomalies is found most commonly in overweight women in their 3rd to 6th decade of life. The onset of tinnitus can be abrupt or develop slowly over time.
You don’t need to enroll in an eight-week program to get started with mindfulness training. Participants in the MBTSR program all received a copy of the groundbreaking book “Full Catastrophe Living” by Jon Kabat-Zinn. Kabat-Zinn’s book is the premier manual for practicing mindfulness in daily life. You will learn about, and be encouraged to practice, meditation and breathing techniques that can help draw your focus away from tinnitus.
Tinnitus is not a disease in and of itself, but rather a symptom of some other underlying health condition. In most cases, tinnitus is a sensorineural reaction in the brain to damage in the ear and auditory system. While tinnitus is often associated with hearing loss, there are roughly 200 different health disorders that can generate tinnitus as a symptom. Below is a list of some of the most commonly reported catalysts for tinnitus.
Tinnitus habituation therapies, such as tinnitus retraining therapy (TRT), involve using low level sounds in a graduated fashion to decrease the perception of tinnitus. This differs from use of masking devices such as described earlier. TRT involves a wearable device that an affected individual can adjust so that the level of sound emitting from the device is about equal to or matches the tinnitus sound. This may be called the “mixing point” because the sound from the device and the tinnitus sound begin to mix together. An affected individual must repeatedly adjust the device so that the sound is at or just below the mixing point. TRT is supported by counseling with a trained professional who can teach the individual the proper techniques to maximize the effectiveness of TRT. Eventually, by following this method, affected individuals no longer need the external sound generating device. Affected individuals will become accustomed to the tinnitus sound (habituation), except when they choose to focus on it. Even then the sound will not be bothersome or troubling. The theory is akin to a person’s ability to ignore sounds such as the hum of air conditioner, the refrigerator motor turning on, or raindrops falling on the roof when driving a car in the rain.
According to the American Tinnitus Association, this complex audiological and neurological condition is experienced by nearly 50 million Americans. (2) Older adults, men, people who smoke or use drugs, and those with a history of ear infections or cardiovascular disease have the highest risk for developing tinnitus. Most experts believe that it’s not a disorder itself, but rather one symptom of another underlying disorder that affects auditory sensations and nerves near the ears. However, there are tinnitus treatment options out there to treat those symptoms.
It’s the same mechanism that’s happening in people who feel a phantom limb sensation after losing a limb, explains Susan Shore, PhD, a professor of otolaryngology, molecular physiology, and biomedical engineering at the University of Michigan in Ann Arbor. With tinnitus the loss of hearing causes specific brain neurons to increase their activity as a way of compensating, she explains. “These neurons also synchronize their activity as they would if there were a sound there, but there is no external sound,” she adds.

Tinnitus is believed to be caused by inner ear cell damage. Cilia in your inner ear move in relation to the pressure of sound waves. This triggers these cells to release an electrical signal through a nerve from your ear (auditory nerve) to your brain. Your brain interprets these signals as sound. If the hairs inside your inner ear are bent or broken, they can "leak" random electrical impulses to your brain, causing tinnitus.
An ultrasound is another test that may be used to aid in the diagnosis of tinnitus. An ultrasound uses reflected high-frequency sound waves and their echoes to create images of structures within the body. An ultrasound can reveal how blood flows within vessels, but is only useful for accessible vessels. It is not helpful for blood vessels within the skull.
Like Shore and Kilgard’s work, most of the promising research on tinnitus has to do with stimulating or altering the brain’s hyperactivity in ways that reduce tinnitus. Some studies have shown electromagnetic brain stimulation — using either invasive or noninvasive techniques, including procedures that involve surgically implanted electrodes or scalp electrodes — may help reverse a patient’s tinnitus. (6) While none of these treatment options are currently available, all have shown some success in treating the condition.
^ McCombe A, Baguley D, Coles R, McKenna L, McKinney C, Windle-Taylor P (2001). "Guidelines for the grading of tinnitus severity: the results of a working group commissioned by the British Association of Otolaryngologists, Head and Neck Surgeons, 1999". Clinical Otolaryngology and Allied Sciences. 26 (5): 388–93. doi:10.1046/j.1365-2273.2001.00490.x. PMID 11678946. Archived (PDF) from the original on 2017-09-24.
Sound waves travel through the ear canal to the middle and inner ear, where hair cells in part of the cochlea help transform sound waves into electrical signals that then travel to the brain's auditory cortex via the auditory nerve. When hair cells are damaged — by loud noise or ototoxic drugs, for example — the circuits in the brain don't receive the signals they're expecting. This stimulates abnormal activity in the neurons, which results in the illusion of sound, or tinnitus.
×