Dr. Ben Wedro practices emergency medicine at Gundersen Clinic, a regional trauma center in La Crosse, Wisconsin. His background includes undergraduate and medical studies at the University of Alberta, a Family Practice internship at Queen's University in Kingston, Ontario and residency training in Emergency Medicine at the University of Oklahoma Health Sciences Center.
A large, 2014 study of almost 14,000 people found obstructive sleep apnea was linked to significantly higher rates of hearing impairment and hearing loss. Scientists think one reason for this is changes to blood flow to the ear that result in inflammation. (We know that sleep apnea causes changes to circulation and weakens blood flow to some areas of the body, including the brain.) A related factor? People with sleep apnea are at greater risk for high blood pressure, and high blood pressure can exacerbate hearing loss, according to research.
Tinnitus is a ringing, buzzing, hissing, swishing, clicking, or other type of noise that seems to originate in the ear or head. Most of us will experience tinnitus or sounds in the ears at some time or another. According to the National Institute on Deafness and Other Communication Disorders (NIDCD), about 10% of adults in the U.S. - nearly 25 million Americans - have experienced tinnitus lasting at least five minutes in the past year. Tinnitus is identified more frequently in white individuals, and the prevalence of tinnitus in the U.S. is almost twice as frequent in the South as in the Northeast.
Physical exam: Physical examination will focus on the head and neck, and especially the ears, including the auditory canals and tympanic membranes. Since the sense of hearing is conducted through one of the cranial nerves (the short nerves that lead directly from the brain to the face, head and neck), a careful neurologic exam also may be performed. Weakness or numbness in the face, mouth, and neck may be associated with a tumor or other structural abnormality pressing on a nerve. The healthcare professional may listen to the flow in the carotid arteries in the neck for an abnormal sound (bruit), since carotid artery stenosis (narrowing of the artery) can transmit a sound to the ear that may cause tinnitus.
Ear canal obstructions, infections, injuries or surgeries. This can include ossicle dislocation within the ear that affects hearing or recurring ear infections (like swimmer’s ear) either in the outside or inside of the ear canal (otitis media or otitis externa). Other ear disorders tied to tinnitus include otosclerosis (causes changes to the bones inside the ears), tympanic membrane perforation or labrynthitis (chronic infections or viruses that attack tissue in the ears).
Hearing loss: Probably the most common cause for tinnitus is hearing loss. As we age, or because of trauma to the ear (through noise, drugs, or chemicals), the portion of the ear that allows us to hear, the cochlea, becomes damaged. Current theories suggest that because the cochlea is no longer sending the normal signals to the brain, the brain becomes confused and essentially develops its own noise to make up for the lack of normal sound signals. This then is interpreted as a sound, tinnitus. This tinnitus can be made worse by anything that makes our hearing worse, such as ear infections or excess wax in the ear.
Age-Related Hearing Loss: Also known as presbycusis, age-related hearing loss results from the cumulative effect of aging on hearing. This permanent, progressive, and sensorineural condition is most pronounced at higher frequencies. It commonly impacts people over the age of 50, as all people begin to lose approximately 0.5% of the inner ear’s hair cells annually starting at age 40.
Dr. Julie Prutsman’s team of audiologists offer a higher standard of expertise. She has been deeply involved with tinnitus for more than 15 years, long before effective treatments had been developed beyond hearing aids and maskers. Dr. Julie also studied under one of the industry’s most respected and leading medical experts, Dr. Pawel Jastreboff, and she has personally trained each and every one of her doctors.
The multidisciplinary approach required input from many different professionals including audiologists, psychologists, speech therapists and physical therapists. Which particular care elements of the intervention had the greatest effect is unknown. A multidisciplinary approach such as the intervention trialled here may have resource implications if it were introduced into standard clinical practice.

Ear canal obstructions, infections, injuries or surgeries. This can include ossicle dislocation within the ear that affects hearing or recurring ear infections (like swimmer’s ear) either in the outside or inside of the ear canal (otitis media or otitis externa). Other ear disorders tied to tinnitus include otosclerosis (causes changes to the bones inside the ears), tympanic membrane perforation or labrynthitis (chronic infections or viruses that attack tissue in the ears).

We provide here a list of known ototoxic drugs and herbs that have been known to cause or exacerbate tinnitus. This list is for educational purposes only and is available as a resource to you to use in your discussions with your health care professional. We thank doctor Neil Bauman, Ph.D., for his expertise in this area and for compiling this list for us.
When there does not seem to be a connection with a disorder of the inner ear or auditory nerve, the tinnitus is called nonotic (i.e. not otic). In some 30% of tinnitus cases, the tinnitus is influenced by the somatosensory system, for instance people can increase or decrease their tinnitus by moving their face, head, or neck.[27] This type is called somatic or craniocervical tinnitus, since it is only head or neck movements that have an effect.[25]

The important thing to remember about tinnitus is that the brain’s response to these random electrical signals determines whether or not a person is annoyed by their tinnitus or not. Magnetoencephalography (MEG, for short) studies have been used to study tinnitus and the brain. MEG takes advantage of the fact that every time neurons send each other signals, their electric current creates a tiny magnetic field. MEG allows scientists to detect such changing patterns of activity in the brain 100 times per second. These studies indicated tinnitus affects the entire brain and helps with understanding why certain therapies are more effective than others.
Demographic variables (age, sex, type of tinnitus) and baseline THI scores of placebo (n = 16) and treatment (n = 11) groups did not significantly differ from one another at the start of the study. At 3 months, participants in the treatment group reported significantly lower scores on the THI when compared to the placebo group (p < .05). The treatment group also showed an 11-point drop in THI scores when comparing baseline and 3 months (p < .05; please see Figure 2). THI scores for the placebo group comparing both time points were non-significant. Past studies have indicated that the minimum change in the THI score to be considered clinically significant is a drop of 6 to 7 points.9 As such, the results of our clinical study suggest that tinnitus and its related symptoms can produce a clinically significant reduction in tinnitus within the first 3 months using the personalized music-based therapy.

Tinnitus (pronounced tih-NITE-us or TIN-ih-tus) is sound in the head with no external source. For many, it's a ringing sound, while for others, it's whistling, buzzing, chirping, hissing, humming, roaring, or even shrieking. The sound may seem to come from one ear or both, from inside the head, or from a distance. It may be constant or intermittent, steady or pulsating.

When we hear, sound waves travel through the ear into the cochlea, our hearing organ in the inner ear. The cochlea is lined with thousands of tiny sound-sensing cells called hair cells. These hair cells change the sound waves into electrical signals. The hearing nerve then sends these electrical signals to the hearing part of the brain, which analyses them and recognises them as sound.


Hearing loss often accompanies tinnitus, so a hearing aid can hit two birds with one stone. In addition to amplifying sound, the device can camouflage the ringing in your ears by boosting other soft sounds in your environment. If you experience hearing loss in addition to your tinnitus, discuss the potential benefits of a hearing aid that may assist with both conditions at the same time.
Currently there is no cure for most cases of tinnitus. Depending on the type of tinnitus, symptoms will tend to come and go over time. Stress level, diet, and exposure to noise can worsen tinnitus. Many people find their tinnitus annoying but can learn to adapt without difficulty. It is likely that if you have had tinnitus, you will have it again in the future.

As of 2014 there were no medications effective for idiopathic tinnitus.[3][73] There is not enough evidence to determine if antidepressants[81] or acamprosate are useful.[82] While there is tentative evidence for benzodiazepines, it is insufficient to support usage.[3] Usefulness of melatonin, as of 2015, is unclear.[83] It is unclear if anticonvulsants are useful for treating tinnitus.[3][84] Steroid injections into the middle ear also do not seem to be effective.[85][86]


Another way of splitting up tinnitus is into objective and subjective. Objective tinnitus can be heard by the examiner. Subjective cannot. Practically, as there is only a tiny proportion of the population with objective tinnitus, this method of categorizing tinnitus is rarely of any help. It seems to us that it should be possible to separate out tinnitus into inner ear vs everything else using some of the large array of audiologic testing available today. For example, it would seem to us that tinnitus should intrinsically "mask" sounds of the same pitch, and that this could be quantified using procedures that are "tuned" to the tinnitus.
Ringing in your ears, hissing, buzzing, roaring - tinnitus can take many forms. The bothersome and uncomfortable noise in your ear varies from one tinnitus sufferer to another. So does the impact of tinnitus on people's lives. Some get used to the never-ending noise in the ear with relative ease, while others are driven to despair. Many ask can tinnitus be cured? Is there a tinnitus remedy?
Masking. Masking devices, worn like hearing aids, generate low-level white noise (a high-pitched hiss, for example) that can reduce the perception of tinnitus and sometimes also produce residual inhibition — less noticeable tinnitus for a short time after the masker is turned off. A specialized device isn't always necessary for masking; often, playing music or having a radio, fan, or white-noise machine on in the background is enough. Although there's not enough evidence from randomized trials to draw any conclusions about the effectiveness of masking, hearing experts often recommend a trial of simple masking strategies (such as setting a radio at low volume between stations) before they turn to more expensive options.
You don’t need to enroll in an eight-week program to get started with mindfulness training. Participants in the MBTSR program all received a copy of the groundbreaking book “Full Catastrophe Living” by Jon Kabat-Zinn. Kabat-Zinn’s book is the premier manual for practicing mindfulness in daily life. You will learn about, and be encouraged to practice, meditation and breathing techniques that can help draw your focus away from tinnitus.
Sound waves travel through the ear canal to the middle and inner ear, where hair cells in part of the cochlea help transform sound waves into electrical signals that then travel to the brain's auditory cortex via the auditory nerve. When hair cells are damaged — by loud noise or ototoxic drugs, for example — the circuits in the brain don't receive the signals they're expecting. This stimulates abnormal activity in the neurons, which results in the illusion of sound, or tinnitus.
×