There is a growing body of evidence suggesting that some tinnitus is a consequence of neuroplastic alterations in the central auditory pathway. These alterations are assumed to result from a disturbed sensory input, caused by hearing loss.[28] Hearing loss could indeed cause a homeostatic response of neurons in the central auditory system, and therefore cause tinnitus.[29]
The use of sound therapy by either hearing aids or tinnitus maskers helps the brain ignore the specific tinnitus frequency. Although these methods are poorly supported by evidence, there are no negative effects.[3][90][91][92] There is some tentative evidence supporting tinnitus retraining therapy.[3][93] There is little evidence supporting the use of transcranial magnetic stimulation.[3][94] It is thus not recommended.[73] As of 2017 there was limited evidence as to whether neurofeedback is or is not helpful.[95]
Another way of splitting up tinnitus is into objective and subjective. Objective tinnitus can be heard by the examiner. Subjective cannot. Practically, as there is only a tiny proportion of the population with objective tinnitus, this method of categorizing tinnitus is rarely of any help. It seems to us that it should be possible to separate out tinnitus into inner ear vs everything else using some of the large array of audiologic testing available today. For example, it would seem to us that tinnitus should intrinsically "mask" sounds of the same pitch, and that this could be quantified using procedures that are "tuned" to the tinnitus.

Paquette et al (2017) reported a prospective study of 166 patients who had brain surgery involving removal of the medial temporal lobe. The prevalence of tinnitus increased from approximately from 10 to 20% post surgery. This study did not include a control -- a natural question would be -- suppose a different part of the brain were removed. One would also think that drilling of the skull from any source might increase tinnitus. We are presently dubious that the medial temporal lobe suppresses tinnitus.
At Sound Relief Hearing Center, we utilize a variety of evidence-based tinnitus treatment options. Most audiologists only offer one solution, hearing aids, which are ineffective in many cases. To treat each unique case of tinnitus, we utilize a variety of innovative technologies and therapies, including Tinnitus Retraining Therapy (TRT). For more information about your tinnitus treatment options, visit our page Tinnitus Treatment. If you’re worried that you won’t ever escape the ringing in your ears, check out our page Tinnitus Success Stories. Finally, follow our Tips from Tinnitus Experts to avoid exacerbating the problem.
Most of the causes of tinnitus alter neurological activity within the auditory cortex, the portion of the brain responsible for hearing. The transmission of sound is interrupted, so some of the neural circuits fail to receive signals. Instead of causing hearing loss, as you might expect due to the lack of stimulation, the neural circuits begin chattering. First, they chatter alone. Then, they become hyperactive and synchronous. When we experience this deviation, our brains attempt to compensate for the change by interpreting the neurological activity as sound. This can resemble ringing, buzzing, hissing, whistling, or roaring, amongst a variety of other noises.
It is very well accepted that tinnitus often is "centralized" -- while it is usually initiated with an inner ear event, persistent tinnitus is associated with changes in central auditory processing (Adjamian et al, 2009). Sometimes this idea is used to put forth a "therapeutic nihilism" -- suggesting that fixing the "cause" -- i.e. inner ear disorder -- will not make the tinnitus go away.   This to us seems overly simplistic -- while it is clear that the central nervous system participates in perception of sounds, and thus must be a participant in the "tinnitus" process, we think that it is implausible that in most cases that there is not an underlying "driver" for persistent tinnitus.
To keep the brain activated and aware, Kilgard’s therapy involves stimulating the vagus nerve, which is actually a pair of nerves that runs inside the neck and into the brain. “All the stuff you brains learns about your body — it all comes in through the vagus nerve,” he says. “We trick the brain into thinking it’s learning something important by stimulating this nerve in the neck.”
Tinnitus can arise anywhere along the auditory pathway, from the outer ear through the middle and inner ear to the brain's auditory cortex, where it's thought to be encoded (in a sense, imprinted). One of the most common causes of tinnitus is damage to the hair cells in the cochlea (see "Auditory pathways and tinnitus"). These cells help transform sound waves into nerve signals. If the auditory pathways or circuits in the brain don't receive the signals they're expecting from the cochlea, the brain in effect "turns up the gain" on those pathways in an effort to detect the signal — in much the same way that you turn up the volume on a car radio when you're trying to find a station's signal. The resulting electrical noise takes the form of tinnitus — a sound that is high-pitched if hearing loss is in the high-frequency range and low-pitched if it's in the low-frequency range. This kind of tinnitus resembles phantom limb pain in an amputee — the brain is producing abnormal nerve signals to compensate for missing input.
Age-Related Hearing Loss: Also known as presbycusis, age-related hearing loss results from the cumulative effect of aging on hearing. This permanent, progressive, and sensorineural condition is most pronounced at higher frequencies. It commonly impacts people over the age of 50, as all people begin to lose approximately 0.5% of the inner ear’s hair cells annually starting at age 40.
Almost every ENT, audiology practice, and hearing aid dispenser who claims to offer tinnitus treatment only offers one solution: hearing aids. While amplification may help some, only 50% of people living with tinnitus experience hearing loss that affects their understanding of speech, which means hearing aids are ineffective. At Sound Relief, we offer only evidence-based options like sound therapy and have seen countless patients experience life-changing results.
Shore says her therapy isn’t for everyone — at least not yet. So far, she’s only treated patients who have a specific form of tinnitus that changes in intensity or pitch when a person moves certain parts of her body. For example, some tinnitus sufferers find the sound in their ears lessens when they clench their teeth or open their mouths wide. This suggests that some touch inputs can influence the tinnitus, Shore says. (Roughly two-thirds of tinnitus patients have this form of the condition, she adds.)

Ear canal obstructions, infections, injuries or surgeries. This can include ossicle dislocation within the ear that affects hearing or recurring ear infections (like swimmer’s ear) either in the outside or inside of the ear canal (otitis media or otitis externa). Other ear disorders tied to tinnitus include otosclerosis (causes changes to the bones inside the ears), tympanic membrane perforation or labrynthitis (chronic infections or viruses that attack tissue in the ears).
Most people should have a formal hearing test done by either the doctor or a hearing specialist (audiologist). People with tinnitus in only one ear and hearing loss should have gadolinium-enhanced magnetic resonance imaging (MRI). People with tinnitus in only one ear and normal hearing should have an MRI if tinnitus lasts more than 6 months. People with pulsatile tinnitus often require magnetic resonance angiography (MRA) and sometimes angiography.
Tinnitus is the perception of sound when no actual external noise is present. While it is commonly referred to as “ringing in the ears,” tinnitus can manifest many different perceptions of sound, including buzzing, hissing, whistling, swooshing, and clicking. In some rare cases, tinnitus patients report hearing music. Tinnitus can be both an acute (temporary) condition or a chronic (ongoing) health malady.
×