Demographic variables (age, sex, type of tinnitus) and baseline THI scores of placebo (n = 16) and treatment (n = 11) groups did not significantly differ from one another at the start of the study. At 3 months, participants in the treatment group reported significantly lower scores on the THI when compared to the placebo group (p < .05). The treatment group also showed an 11-point drop in THI scores when comparing baseline and 3 months (p < .05; please see Figure 2). THI scores for the placebo group comparing both time points were non-significant. Past studies have indicated that the minimum change in the THI score to be considered clinically significant is a drop of 6 to 7 points.9 As such, the results of our clinical study suggest that tinnitus and its related symptoms can produce a clinically significant reduction in tinnitus within the first 3 months using the personalized music-based therapy.
Acoustic neural stimulation is a relatively new technique for people whose tinnitus is very loud or won’t go away. It uses a palm-sized device and headphones to deliver a broadband acoustic signal embedded in music. The treatment helps stimulate change in the neural circuits in the brain, which eventually desensitizes you to the tinnitus. The device has been shown to be effective in reducing or eliminating tinnitus in a significant number of study volunteers.
Oticon Tinnitus SoundSupport works by adding sound to the buzzing, hissing, or roaring you already hear. This may seem peculiar, but in fact, the relief sounds (which are dynamic and soothing) can mix with and distract you from those bothersome noises, giving you control over your condition. The flexible program includes a variety of relief sounds that can ease the effects of tinnitus. Your audiologist can personalize the sounds to your needs and preferences, and they can be used alongside Tinnitus Retraining Therapy for instruction and support.

A common cause of tinnitus is inner ear hair cell damage. Tiny, delicate hairs in your inner ear move in relation to the pressure of sound waves. This triggers cells to release an electrical signal through a nerve from your ear (auditory nerve) to your brain. Your brain interprets these signals as sound. If the hairs inside your inner ear are bent or broken, they can "leak" random electrical impulses to your brain, causing tinnitus.
×