Sound waves travel through the ear canal to the middle and inner ear, where hair cells in part of the cochlea help transform sound waves into electrical signals that then travel to the brain's auditory cortex via the auditory nerve. When hair cells are damaged — by loud noise or ototoxic drugs, for example — the circuits in the brain don't receive the signals they're expecting. This stimulates abnormal activity in the neurons, which results in the illusion of sound, or tinnitus.
The patients were assessed at the start of the study for their hearing ability and the severity of their tinnitus. The researchers assessed the degree of severity using established questionnaires, which looked at health-related quality of life, the psychological distress associated with tinnitus and how far it impaired their functioning. Using this information, researchers divided participants into four groups ranked on the severity of their condition.

It’s been found that exposure to very loud noises can contribute to early hearing loss and ear problems. Loud sounds can include those from heavy machinery or construction equipment (such as sledge hammers, chain saws and firearms). Even gun shots, car accidents, or very loud concerts and events can trigger acute tinnitus, although this should go away within a couple days in some cases. (5)


Superior semicircular canal dehiscence syndrome is another not uncommon cause of pulsatile tinnitus. The superior semicircular canal is one of three canals found in the vestibular apparatus of the inner ear. The vestibular apparatus helps to maintain equilibrium and balance. In this syndrome, a part of the temporal bone that overlies the superior semicircular canal is abnormally thin or absent. Superior semicircular canal dehiscence syndrome can affect both hearing and balance to different degrees.

Tinnitus habituation therapies, such as tinnitus retraining therapy (TRT), involve using low level sounds in a graduated fashion to decrease the perception of tinnitus. This differs from use of masking devices such as described earlier. TRT involves a wearable device that an affected individual can adjust so that the level of sound emitting from the device is about equal to or matches the tinnitus sound. This may be called the “mixing point” because the sound from the device and the tinnitus sound begin to mix together. An affected individual must repeatedly adjust the device so that the sound is at or just below the mixing point. TRT is supported by counseling with a trained professional who can teach the individual the proper techniques to maximize the effectiveness of TRT. Eventually, by following this method, affected individuals no longer need the external sound generating device. Affected individuals will become accustomed to the tinnitus sound (habituation), except when they choose to focus on it. Even then the sound will not be bothersome or troubling. The theory is akin to a person’s ability to ignore sounds such as the hum of air conditioner, the refrigerator motor turning on, or raindrops falling on the roof when driving a car in the rain.
Lidocaine, a medication used for the treatment of certain types of abnormal heart rhythms, has been shown to relieve tinnitus for some people, but it must be given intravenously or into the middle ear to be effective. However, the benefits of lidocaine are almost always outweighed by the risks of the drug and it is therefore not recommended and not used for tinnitus.
Health care professionals who incline to offer patients an option or strategy to deal with tinnitus are confronted with the variability inherent to this disorder.5 The cause of tinnitus can vary, although people who experience tinnitus have usually first developed hearing loss due to ageing or from exposure to loud noise that caused peripheral auditory damage. In fact, the number of tinnitus sufferers that develop the constant ringing due to hearing loss may be even higher than thought, as some tinnitus sufferers only appear to have normal hearing when thresholds at frequencies below 8 kHz are measured. Less frequently, tinnitus may also occur after a head or neck injury, or due to the presence of an acoustic neuroma. Certain medications may also contribute to the development of tinnitus through effects on hair cells in the inner ear or via mechanisms that are not yet well understood.6 This variety in cause has been the first part of the challenge in developing a “cure” or effective treatment for tinnitus. However, even for the largest group of tinnitus sufferers (those who may develop tinnitus due to hearing damage), effective treatments have been hard to come by.
Widex employs fractal tone technology, so that the sounds you hear are predictable but not repeating. Your audiologist can choose between an assortment of “musical tones” known as “Zen styles,” which are random and chime-like. Your audiologist can adjust the tones’ pitch, tempo, and volume. If employed correctly, Widex Zen Therapy can help re-wire your brain and make your tinnitus less noticeable.
Tinnitus (pronounced ti-ni-tis), or ringing in the ears, is the sensation of hearing ringing, buzzing, hissing, chirping, whistling, or other sounds. The noise can be intermittent or continuous, and can vary in loudness. It is often worse when background noise is low, so you may be most aware of it at night when you're trying to fall asleep in a quiet room. In rare cases, the sound beats in sync with your heart (pulsatile tinnitus).
The majority of cases of tinnitus are subjective. Objective tinnitus is far less common. However, a diagnosis of objective tinnitus is tied to how hard and well the objective (outside) listener tries to hear the sound in question. Because of this problem, some clinicians now simply refer to tinnitus as either rhythmic or non-rhythmic. Generally, rhythmic tinnitus correlates with objective tinnitus and non-rhythmic tinnitus correlates with subjective tinnitus. Specific forms of tinnitus such as pulsatile tinnitus and muscular tinnitus, which are forms of rhythmic tinnitus, are relatively rare. Pulsatile tinnitus may also be known as pulse-synchronous tinnitus. Properly identifying and distinguishing these less common forms of tinnitus is important because the underlying cause of pulsatile or muscular tinnitus can often be identified and treated.
The most common noise is the sound of rapid or turbulent blood flow in major vessels of the neck. This abnormal blood flow may occur because of a reduced red blood cell count (anemia) or a blockage of the arteries (atherosclerosis) and may be worsened in people with poorly controlled high blood pressure (hypertension). Some small tumors of the middle ear called glomus tumors are rich in blood vessels. Although the tumors are small, they are very near the sound-receiving structures of the ear, and blood flow through them can sometimes be heard (only in one ear). Sometimes, blood vessel malformations that involve abnormal connections between arteries and veins (arteriovenous malformations) develop in the membrane covering the brain (the dura). If these malformations are near the ear, the person sometimes can hear blood flowing through them.
A brain tumor can be either non-cancerous (benign) or cancerous (malignant), primary, or secondary. Common symptoms of a primary brain tumor are headaches, seizures, memory problems, personality changes, and nausea and vomiting. Causes and risk factors include age, gender, family history, and exposure to chemicals. Treatment is depends upon the tumor type, grade, and location.
This tinnitus treatment we developed makes use of software that customizes a music-based therapy for each individual tinnitus sufferer. The software achieves this by incorporating a computational model of the “tinnitus brain.” This model captures changes in the auditory brain which may be causing the tinnitus.5,7 We do this by taking into account the individual’s audiogram and a pitch match of their tinnitus, which generates a tinnitus profile unique to him or her. The software then uses the model to predict how each music track can be altered spectrally to reduce tinnitus for that specific tinnitus profile. Delivering the treatment using headphones that could produce high frequencies (above 10–12 kHz) was an integral part of treatment effectiveness. With such headphones, the treatment could work by taking advantage of the same kind of brain plasticity that may contribute to the person's tinnitus in the first place without being limited by a lack of high-frequency sounds.8 By incorporating the latest tinnitus research into our software, we developed a treatment approach that provides greater promise in treating tinnitus than existing treatments with a one-size-fits-all approach.
Experts recommend that patients with severe tinnitus become educated about tinnitus and how they best deal with its symptoms. This can include learning about biofeedback in order to control stress and your reaction to tinnitus sounds, talking with a counselor, or joining a support group. Coping strategies are most useful for managing emotional side effects of tinnitus, such as anxiety, trouble sleeping, lack of focus and depression.
There is no cure for tinnitus. However, it can be temporary or persistant, mild or severe, gradual or instant. The goal of treatment is to help you manage your perception of the sound in your head. There are many treatments available that can help reduce the perceived intensity of tinnitus, as well as its omnipresence. Tinnitus remedies may not be able to stop the perceived sound, but they can improve your quality of life.
While there is currently no cure for tinnitus, treatment options like Tinnitus Control at least provide patients with the ability to successfully manage the ringing they hear by suppressing the cause of it. This is achieved through their proprietary blend of the following active ingredients: arnica, chininum sulphuricum, ferrum metallicum, kali phosphoricum, natrum sulphuricum, pulsatilla, silicea, thiosinaminum, garlic and gingko biloba.
Before long, you’re both mentally and physically stimulated in ways that make it even harder to relax and fall asleep. Like any other form of anxiety, stress about falling asleep creates mental arousal, bringing your brain to alertness. And it also creates physical arousal, raising heart rate and body temperature. This kind of anxiety can lead to behaviors that further undermine sleep, including:
When there does not seem to be a connection with a disorder of the inner ear or auditory nerve, the tinnitus is called nonotic (i.e. not otic). In some 30% of tinnitus cases, the tinnitus is influenced by the somatosensory system, for instance people can increase or decrease their tinnitus by moving their face, head, or neck.[27] This type is called somatic or craniocervical tinnitus, since it is only head or neck movements that have an effect.[25]
No two patients and no two tinnitus cases are alike. As such, the “best” treatment option is often contingent on an array of factors unique to each patient. Moreover, successful management of tinnitus may require overlapping layers of treatment. ATA recommends that patients work with their healthcare provider(s) to identify and implement the treatment strategy that is best suited to their particular needs.
Use other relaxation techniques. Tinnitus is understandably anxiety provoking, often a source of frustration and stress throughout the day and night. Reducing anxiety, and finding ways to relax, have benefits for both tinnitus and sleep. Relaxation exercises can reduce the aggravation of tinnitus, and make you more able to fall asleep. A few of the relaxation techniques my patients find most effective and easy to use are:
An assessment of hyperacusis, a frequent accompaniment of tinnitus,[56] may also be made.[57] The measured parameter is Loudness Discomfort Level (LDL) in dB, the subjective level of acute discomfort at specified frequencies over the frequency range of hearing. This defines a dynamic range between the hearing threshold at that frequency and the loudnes discomfort level. A compressed dynamic range over a particular frequency range is associated with subjectve hyperacusis. Normal hearing threshold is generally defined as 0–20 decibels (dB). Normal loudness discomfort levels are 85–90+ dB, with some authorities citing 100 dB. A dynamic range of 55 dB or less is indicative of hyperacusis.[58][59]
As with the first exercise, make sure you’re comfortable and unlikely to be disturbed. Now imagine yourself leaving this room. You walk out of the door and follow a path… at the end of the path is another door. You open that door and inside you see a beautiful garden – you can hear birds singing, children playing somewhere in the distance. You feel a cool breeze on your skin and hear the rustle of leaves through the trees. The colours of the leaves, green, gold, red, all dance across a beautiful pond in the middle… as you walk over to the pond, you feel the soft grass under your bare feet… you dip your toes into the calm, clear pond and stop for a moment – just experiencing the beauty of everything around you…
An ultrasound is another test that may be used to aid in the diagnosis of tinnitus. An ultrasound uses reflected high-frequency sound waves and their echoes to create images of structures within the body. An ultrasound can reveal how blood flows within vessels, but is only useful for accessible vessels. It is not helpful for blood vessels within the skull.

It’s been found that exposure to very loud noises can contribute to early hearing loss and ear problems. Loud sounds can include those from heavy machinery or construction equipment (such as sledge hammers, chain saws and firearms). Even gun shots, car accidents, or very loud concerts and events can trigger acute tinnitus, although this should go away within a couple days in some cases. (5)
Most people should have a formal hearing test done by either the doctor or a hearing specialist (audiologist). People with tinnitus in only one ear and hearing loss should have gadolinium-enhanced magnetic resonance imaging (MRI). People with tinnitus in only one ear and normal hearing should have an MRI if tinnitus lasts more than 6 months. People with pulsatile tinnitus often require magnetic resonance angiography (MRA) and sometimes angiography.
A poor diet, sedentary lifestyle, lack of sleep and chronic stress are all capable of reducing immunity and making you susceptible to nerve damage, allergies and ear problems. If you frequently experience seasonal or food allergies that affect your ears, ear infections, swelling and other problems related to damage of the vestibular system, consider changing your diet, exercise routine and ways of dealing with stress, which in turn will aid your tinnitus treatment. Try natural stress relievers like exercising, yoga, meditation, taking warm baths, using essential oils and spending more time outdoors, and eat an anti-inflammatory diet.
There's no known cure for tinnitus. Current treatments generally involve masking the sound or learning to ignore it. A research team led by Dr. Michael Kilgard at the University of Texas at Dallas and Dr. Navzer Engineer at MicroTransponder, Inc. set out to see if they could develop a way to reverse tinnitus by essentially resetting the brain's auditory system. Their work was funded in part by NIH’s National Institute on Deafness and Other Communication Disorders (NIDCD).

If you are living with tinnitus, contact the Sound Relief Hearing Center. We are the tinnitus experts you need to experience the best possible outcome with your tinnitus treatment. To learn more about us, please browse our website or give us a call at 720-259-9962. You can also schedule an appointment online to meet with one of our tinnitus specialists. We look forward to hearing from you!
Tinnitus affects males and females in equal numbers. It can affect individuals of any age, even children. Tinnitus, collectively, is a very common condition and estimated to affect approximately 10% of the general population. Rhythmic tinnitus occurs far less frequently than non-rhythmic tinnitus, accounting for approximately 1% of all cases of tinnitus and is considered relatively rare in the general population. The exact prevalence or incidence of rhythmic tinnitus is unknown. Rhythmic tinnitus due to pseudotumor and sinus wall anomalies is found most commonly in overweight women in their 3rd to 6th decade of life. The onset of tinnitus can be abrupt or develop slowly over time.

The treatment group (245 patients) received some elements of standard care (such as a masking device and hearing aid if needed), but also received CBT. The CBT included an extensive educational session, sessions with a clinical psychologist and group treatments involving “psychological education” explaining their condition, cognitive restructuring, exposure techniques, stress relief, applied relaxation and movement therapy.
Repetitive transcranial magnetic stimulation (rTMS). This technique, which uses a small device placed on the scalp to generate short magnetic pulses, is already being used to normalize electrical activity in the brains of people with epilepsy. Preliminary trials of rTMS in humans, funded by the NIDCD, are helping researchers pinpoint the best places in the brain to stimulate in order to suppress tinnitus. Researchers are also looking for ways to identify which people are most likely to respond well to stimulation devices.
With respect to incidence (the table above is about prevalence), Martinez et al (2015) reported that there were 5.4 new cases of tinnitus per 10,000 person-years in England. We don't find this statistic much use as tinnitus is highly prevalent in otherwise normal persons. It seems to us that their study is more about how many persons with tinnitus were detected by the health care system -- and that it is more a study of England's health care system than of tinnitus.
Tinnitus usually comes in the form of a high-pitched tone in one or both ears, but can also sound like a clicking, roaring or whooshing sound. While tinnitus isn't fully understood, it is known to be a sign that something is wrong in the auditory system: the ear, the auditory nerve that connects the inner ear to the brain, or the parts of the brain that process sound. Something as simple as a piece of earwax blocking the ear canal can cause tinnitus, but it can also arise from a number of health conditions. For example, when sensory cells in the inner ear are damaged from loud noise, the resulting hearing loss changes some of the signals in the brain to cause tinnitus.
From amongst the many treatments for tinnitus, you’re certain to find a solution that helps you live a more comfortable life, free of the frustration of tinnitus. Although a definitive cure is not currently available, these tools can help you manage your tinnitus and minimize its influence on your life. If you work closely with an experienced tinnitus specialist, they can help you determine which course of action is best for you.

From amongst the many treatments for tinnitus, you’re certain to find a solution that helps you live a more comfortable life, free of the frustration of tinnitus. Although a definitive cure is not currently available, these tools can help you manage your tinnitus and minimize its influence on your life. If you work closely with an experienced tinnitus specialist, they can help you determine which course of action is best for you.
It is important to note that existing hearing loss is sometimes not directly observable by the patient, who may not perceive any lost frequencies. But this this does not mean that hearing damage has not been done. A trained audiologist or other hearing health professional can perform sensitive audiometric tests to precisely measure the true extent of hearing loss.
Tinnitus is characterized by ringing or buzzing in the ears. Exposure to loud noises, earwax blockages, heart or blood vessel issues, prescription medications, and thyroid disorders can all cause tinnitus. See your doctor for an accurate diagnosis, and work with them to develop a treatment plan. In many cases, tinnitus is irreversible, but there are several ways to reduce its severity. For instance, sound generators, hearing aids, and medication can help mask ringing or buzzing. Tinnitus research is a constantly evolving field, and you might be able to try experimental therapies as well.
Tinnitus might also get worse with age and is most common among older adults who suffer from general hearing loss. Some 27 percent of older and elderly adults report having tinnitus, many of them seemingly due to factors like loud workplaces. (9) The elderly commonly experience tinnitus and hearing loss due to symptoms associated with circulatory problems, inflammation and nerve damage.
Tinnitus can be extremely frustrating and can leave you feeling overwhelmed and unsure about your next steps. Remember that you are not alone - tinnitus, while not well-understood, is common. Make an appointment with a hearing care professional near you, preferably one who specializes in tinnitus treatment. Be prepared to discuss your symptoms in detail so you can get relief and regain your quality of life. 

Dr. Julie Prutsman’s team of audiologists offer a higher standard of expertise. She has been deeply involved with tinnitus for more than 15 years, long before effective treatments had been developed beyond hearing aids and maskers. Dr. Julie also studied under one of the industry’s most respected and leading medical experts, Dr. Pawel Jastreboff, and she has personally trained each and every one of her doctors.
It is possible that the most common cause of pulsatile tinnitus is sigmoid sinus diverticulum and dehiscence, which can be collectively referred to as sinus wall abnormalities or SSWA. The sigmoid sinus is a blood carrying channel on the side of the brain that receives blood from veins within the brain. The blood eventually exits through the internal jugular vein. Sigmoid sinus diverticulum refers to the formation of small sac-like pouches (diverticula) that protrude through the wall of the sigmoid sinus into the mastoid bone behind the ear. Dehiscence refers to absence of part of the bone that surrounds the sigmoid sinus in the mastoid. It is unknown whether these conditions represent different parts of one disease process or spectrum, or whether they are two distinct conditions. These abnormalities cause pressure, blood flow, and noise changes within the sigmoid sinus, which ultimately results in pulsatile tinnitus. Narrowing of the blood vessel that leads into the sigmoid sinus, known as the transverse sinus, has also been associated with pulsatile tinnitus.

It’s been found that exposure to very loud noises can contribute to early hearing loss and ear problems. Loud sounds can include those from heavy machinery or construction equipment (such as sledge hammers, chain saws and firearms). Even gun shots, car accidents, or very loud concerts and events can trigger acute tinnitus, although this should go away within a couple days in some cases. (5)


Some people experience a sound that beats in time with their pulse, known as pulsatile tinnitus or vascular tinnitus.[40] Pulsatile tinnitus is usually objective in nature, resulting from altered blood flow, increased blood turbulence near the ear, such as from atherosclerosis or venous hum,[41] but it can also arise as a subjective phenomenon from an increased awareness of blood flow in the ear.[40] Rarely, pulsatile tinnitus may be a symptom of potentially life-threatening conditions such as carotid artery aneurysm[42] or carotid artery dissection.[43] Pulsatile tinnitus may also indicate vasculitis, or more specifically, giant cell arteritis. Pulsatile tinnitus may also be an indication of idiopathic intracranial hypertension.[44] Pulsatile tinnitus can be a symptom of intracranial vascular abnormalities and should be evaluated for irregular noises of blood flow (bruits).[45]

Antidepressants are occasionally associated with tinnitus (Robinson, 2007). For example, Tandon (1987) reported that 1% of those taking imiprimine complained of tinnitus. In a double-blind trial of paroxetine for tinnitus, 3% discontinued due to a perceived worsening of tinnitus (Robinson, 2007). There are case reports concerning tinnitus as a withdrawal symptom from Venlafaxine and sertraline (Robinson, 2007). In our clinical practice, we have occasionally encountered patients reporting worsening of tinnitus with an antidepressant, generally in the SSRI family.
Most people should have a formal hearing test done by either the doctor or a hearing specialist (audiologist). People with tinnitus in only one ear and hearing loss should have gadolinium-enhanced magnetic resonance imaging (MRI). People with tinnitus in only one ear and normal hearing should have an MRI if tinnitus lasts more than 6 months. People with pulsatile tinnitus often require magnetic resonance angiography (MRA) and sometimes angiography.
No matter what the cause, the condition interrupts the transmission of sound from the ear to the brain. Some of the neural circuits no longer receive signals. Strangely, this does not cause hearing loss. Instead, when neural circuits don’t receive stimulation, they react by chattering together, alone at first and then synchronous with each other. Once the nerve cells become hyperactive and occur at the same time, they simulate a tone the brain “hears” as tinnitus. Analogous to a piano, the broken “keys” create a permanent tone without a pianist playing the keys.
×