Resetting the tonotopic map. Researchers are exploring how to take advantage of the tonotopic map, which organizes neurons in the auditory cortex according to the frequency of the sound to which they respond. Previous research has shown a change in the organization of the tonotopic map after exposing the ear to intense noise. By understanding how these changes happen, researchers could develop techniques to bring the map back to normal and relieve tinnitus.

Most tinnitus is "sensorineural," meaning that it's due to hearing loss at the cochlea or cochlear nerve level. But tinnitus may originate in other places. Our bodies normally produce sounds (called somatic sounds) that we usually don't notice because we are listening to external sounds. Anything that blocks normal hearing can bring somatic sounds to our attention. For example, you may get head noise when earwax blocks the outer ear.
Tinnitus Retraining Therapy. Tinnitus Retraining Therapy (TRT) combines a wearable device that is individually programmed to mask the specific tonal frequency of that person’s tinnitus, with psychological therapy that teaches a patient to ignore the sounds his tinnitus is creating. I consider it the best of all of the above noise suppression techniques, as it is individually tailored for each person and involves support from a trained psychological therapist. It is also the most expensive and time consuming, but in my medical opinion, the most beneficial of all the noise suppression techniques listed above.
The latest news about tinnitus treatment comes from a UK study showing that Mindfulness Based Cognitive Therapy (MBCT) significantly helps reduce the severity of the disorder. The researchers reported that, among the 75 patients being studied, both relaxation therapy and MBCT worked to alleviate symptoms as well as reducing psychological distress, anxiety and depression related to the disorder. MBCT led to greater reductions in tinnitus severity and the improvements lasted longer.
Other potential sources of the sounds normally associated with tinnitus should be ruled out. For instance, two recognized sources of high-pitched sounds might be electromagnetic fields common in modern wiring and various sound signal transmissions. A common and often misdiagnosed condition that mimics tinnitus is radio frequency (RF) hearing, in which subjects have been tested and found to hear high-pitched transmission frequencies that sound similar to tinnitus.[71][72]
Take the first step toward relief by scheduling a consultation with one of our audiologists. By carefully examining your case history and conducting audiometric testing, we can identify the likely causes of your tinnitus and recommend an effective treatment. In addition, if medically necessary, we may refer you to another physician to complete your diagnosis.
Acoustic neuroma: This is a rare subjective cause of tinnitus, and includes a certain type of brain tumor known as an acoustic neuroma. The tumors grow on the nerve that supplies hearing and can cause tinnitus. This type of the condition usually are only noticed in one ear, unlike the more common sort caused by hearing loss usually seen in both ears. Causes of objective tinnitus are usually easier to find.
Hyperactivity and deep brain stimulation. Researchers have observed hyperactivity in neural networks after exposing the ear to intense noise. Understanding specifically where in the brain this hyperactivity begins and how it spreads to other areas could lead to treatments that use deep brain stimulation to calm the neural networks and reduce tinnitus.
Static noise is designed to distract you from your tinnitus.  By mixing a static sound with the tinnitus noise, this can help to divert your attention away from the tinnitus.  Miracle-Ear hearing aids have five different types of pre-set static noise sounds so that together, with your hearing care specialist, you can customize this program to your needs to help you relax without the annoyance of tinnitus. 
A wealth of research has gone into understanding the mechanisms of tinnitus due to the increased concern in our ageing and noise exposed society through the support of organizations such as the Tinnitus Research Institute, the American Tinnitus Association and even the US Department of Defense. This research has helped us to understand not only why and how this phantom percept can develop, but also sheds light on why it may sound like a hiss for one person and a high pitched tone for another.7 In addition, neuroscientists have shown connections between the limbic system (where emotions are processed) and the auditory system; it is not uncommon for tinnitus to increase during times of stress or negative emotions.5 As such, the effective tinnitus treatment strategies should be enjoyable and positive, and should account for the variability in what tinnitus sounds like for each patient.
Tinnitus is commonly accompanied by hearing loss, and roughly 90% of persons with chronic tinnitus have some form of hearing loss (Davis and Rafaie, 2000; Lockwood et al, 2002). On the other hand, only about 30-40% of persons with hearing loss develop tinnitus. According to Park and Moon (2004), hearing impairment roughly doubles the odds of having tinnitus, and triples the odds of having annoying tinnitus.
Take medication for a thyroid disorder, if necessary. Tinnitus can be related to both hyperthyroidism, or an overactive thyroid, and hypothyroidism, or an underactive thyroid. Your doctor can check for swelling or lumps in your thyroid gland, which is in your throat, and order blood screens to test its function. If they find an issue, they’ll prescribe medication to regulate your thyroid hormone levels.[17]
Changing Prescriptions, OTC Medications and Food Additives. Sometimes the cause of tinnitus is a prescription (such as an antibiotic), an over the counter medication or a food additive. As an example, two very common prescriptions that have been shown to cause tinnitus are quinine and chloroquine, which are both used to prevent malaria. Certain diuretics and cancer medications can also cause tinnitus. Even something as simple as OTC aspirin can generate tinnitus in some people. The food additives NutraSweet, Splenda and Aspartame have all been linked to tinnitus, and a whole host of other side effects, in clinical studies. These man-made food additives should be eliminated from your diet completely. If any of your medications are causing your tinnitus, your doctor may recommend stopping, reducing or switching them out for other medicines to see if that helps cure your tinnitus.

Ear protection can mitigate the negative effects of loud noises and prevent the exacerbation of tinnitus. This is especially important if you work in a loud environment or regularly visit loud places, like shooting ranges, concerts, and clubs. Wearing custom earplugs or special earmuffs can go a long way toward preventing your tinnitus from worsening.


Like Shore and Kilgard’s work, most of the promising research on tinnitus has to do with stimulating or altering the brain’s hyperactivity in ways that reduce tinnitus. Some studies have shown electromagnetic brain stimulation — using either invasive or noninvasive techniques, including procedures that involve surgically implanted electrodes or scalp electrodes — may help reverse a patient’s tinnitus. (6) While none of these treatment options are currently available, all have shown some success in treating the condition.
One of the big problems associated with curing tinnitus, experts say, is that it’s really a symptom of multiple conditions, as opposed to being a single condition with a predictable trigger. In fact, more than 200 different conditions — problems ranging from hearing loss to head or neck trauma — have been linked with tinnitus, which makes it a real bear to try to stop. (3)
Note however that tinnitus nearly always consists of fairly simple sounds -- for example, hearing someone talking that no one else can hear would not ordinarily be called tinnitus -- this would be called an auditory hallucination. Musical hallucinations in patients without psychiatric disturbance is most often described in older persons, years after hearing loss.

It is possible that the most common cause of pulsatile tinnitus is sigmoid sinus diverticulum and dehiscence, which can be collectively referred to as sinus wall abnormalities or SSWA. The sigmoid sinus is a blood carrying channel on the side of the brain that receives blood from veins within the brain. The blood eventually exits through the internal jugular vein. Sigmoid sinus diverticulum refers to the formation of small sac-like pouches (diverticula) that protrude through the wall of the sigmoid sinus into the mastoid bone behind the ear. Dehiscence refers to absence of part of the bone that surrounds the sigmoid sinus in the mastoid. It is unknown whether these conditions represent different parts of one disease process or spectrum, or whether they are two distinct conditions. These abnormalities cause pressure, blood flow, and noise changes within the sigmoid sinus, which ultimately results in pulsatile tinnitus. Narrowing of the blood vessel that leads into the sigmoid sinus, known as the transverse sinus, has also been associated with pulsatile tinnitus.
The researchers point out that up to one in five adults will develop tinnitus, a distressing disorder in which people hear buzzing, ringing and other sounds from no external source. Tinnitus can occur in one or both ears, and is usually continuous but can fluctuate. A randomised controlled trial is the best way of assessing the effectiveness of an intervention.

Counseling helps you learn how to live with your tinnitus. Most counseling programs have an educational component to help you understand what goes on in the brain to cause tinnitus. Some counseling programs also will help you change the way you think about and react to your tinnitus. You might learn some things to do on your own to make the noise less noticeable, to help you relax during the day, or to fall asleep at night.

Antidepressants are occasionally associated with tinnitus (Robinson, 2007). For example, Tandon (1987) reported that 1% of those taking imiprimine complained of tinnitus. In a double-blind trial of paroxetine for tinnitus, 3% discontinued due to a perceived worsening of tinnitus (Robinson, 2007). There are case reports concerning tinnitus as a withdrawal symptom from Venlafaxine and sertraline (Robinson, 2007). In our clinical practice, we have occasionally encountered patients reporting worsening of tinnitus with an antidepressant, generally in the SSRI family.
Vertigo is the sensation of spinning or rocking, even when someone is at rest. Vertigo may be caused by a problem in the brain or spinal cord or a problem within in the inner ear. Head injuries, certain medications, and female gender are associated with a higher risk of vertigo. Medical history, a physical exam, and sometimes an MRI or CT scan are required to diagnose vertigo. The treatment of vertigo may include:
Individuals were recruited from within and around Hamilton, Ontario via online announcements and audiology clinics. Applicants were initially interviewed via telephone to screen for all inclusion and exclusion criteria for the study in order to determine whether they qualified for on-site screening. The on-site screening, and characterization of participants’ hearing thresholds and tinnitus profiles were conducted in a lab at McMaster University using a computer-based tinnitus assessment tool. Participants were randomly allocated to the treatment or placebo-control group. The assignment of the treatment or placebo music package was completed by a distributor site independent of the research study site. Participants and research personnel were blinded to which music package the participants received.
Tinnitus can arise anywhere along the auditory pathway, from the outer ear through the middle and inner ear to the brain's auditory cortex, where it's thought to be encoded (in a sense, imprinted). One of the most common causes of tinnitus is damage to the hair cells in the cochlea (see "Auditory pathways and tinnitus"). These cells help transform sound waves into nerve signals. If the auditory pathways or circuits in the brain don't receive the signals they're expecting from the cochlea, the brain in effect "turns up the gain" on those pathways in an effort to detect the signal — in much the same way that you turn up the volume on a car radio when you're trying to find a station's signal. The resulting electrical noise takes the form of tinnitus — a sound that is high-pitched if hearing loss is in the high-frequency range and low-pitched if it's in the low-frequency range. This kind of tinnitus resembles phantom limb pain in an amputee — the brain is producing abnormal nerve signals to compensate for missing input.
Repetitive transcranial magnetic stimulation (rTMS). This technique, which uses a small device placed on the scalp to generate short magnetic pulses, is already being used to normalize electrical activity in the brains of people with epilepsy. Preliminary trials of rTMS in humans, funded by the NIDCD, are helping researchers pinpoint the best places in the brain to stimulate in order to suppress tinnitus. Researchers are also looking for ways to identify which people are most likely to respond well to stimulation devices.
Tinnitus retraining therapy (TRT). This technique is based on the assumption that tinnitus results from abnormal neuronal activity (see "What's going on?"). The aim is to habituate the auditory system to the tinnitus signals, making them less noticeable or less bothersome. The main components of TRT are individual counseling (to explain the auditory system, how tinnitus develops, and how TRT can help) and sound therapy. A device is inserted in the ear to generate low-level noise and environmental sounds that match the pitch, volume, and quality of the patient's tinnitus. Depending on the severity of the symptoms, treatment may last one to two years.
ABR (ABR) testing may show some subtle abnormalities in otherwise normal persons with tinnitus (Kehrle et al, 2008). The main use of ABR (ABR test) is to assist in diagnosing tinnitus due to a tumor of the 8th nerve or tinnitus due to a central process. A brain MRI is used for the same general purpose and covers far more territory, but is roughly 3 times more expensive. ABRs are generally not different between patients with tinnitus with or without hyperacusis (Shim et al, 2017).
About six percent of the general population has what they consider to be "severe" tinnitus. That is a gigantic number of people ! Tinnitus is more common with advancing age. In a large study of more than 2000 adults aged 50 and above, 30.3% reported having experienced tinnitus, with 48% reporting symptoms in both ears. Tinnitus had been present for at least 6 years in 50% of cases, and most (55%) reported a gradual onset. Tinnitus was described as mildly to extremely annoying by 67%.(Sindhusake et al. 2003)

^ Jump up to: a b Schecklmann, Martin; Vielsmeier, Veronika; Steffens, Thomas; Landgrebe, Michael; Langguth, Berthold; Kleinjung, Tobias; Andersson, Gerhard (18 April 2012). "Relationship between Audiometric Slope and Tinnitus Pitch in Tinnitus Patients: Insights into the Mechanisms of Tinnitus Generation". PLOS One. 7 (4): e34878. Bibcode:2012PLoSO...734878S. doi:10.1371/journal.pone.0034878. PMC 3329543. PMID 22529949.
The sound you hear is actually being generated by the part of your ear known as the cochlea. It’s a very complicated organ with sensory hairs, internal fluid and nerve receptors, that when damaged (or as it naturally degrades as you get older), can cause it to send incorrect input into your brain. In layman’s terms, because it’s no longer working as well as it used to, it thinks there’s a ringing sound in the area and tells your brain to generate that sound in your head. There are other symptoms of tinnitus, but this is the main one.
Supporting the idea that central reorganization is overestimated as "the" cause of tinnitus, a recent study by Wineland et al showed no changes in central connectivity of auditory cortex or other key cortical regions (Wineland et al, 2012). Considering other parts of the brain, Ueyama et al (2013) reported that there was increased fMRI activity in the bilateral rectus gyri, as well as cingulate gyri correlating with distress. Loudness was correlated with values in the thalamus, bilateral hippocampus and left caudate. In other words, the changes in the brain associated with tinnitus seem to be associated with emotional reaction (e.g. cingulate), and input systems (e.g. thalamus). There are a few areas whose role is not so obvious (e.g. caudate). This makes a more sense than the Wineland result, but of course, they were measuring different things. MRI studies related to audition or dizziness must be interpreted with great caution as the magnetic field of the MRI stimulates the inner ear, and because MRI scanners are noisy.
Medication. Some medications are known to be ototoxic while others list tinnitus as a side effect without causing permanent damage to the ear structures. New medications come out so often that it is difficult to maintain an up to date listing; another option, if you are experiencing tinnitus and are curious if it could be your medication, is to talk to your pharmacist or look up your specific prescriptions online through a website such as www.drugs.com. You should never stop a medication without consulting with your physician, even if you think it may be contributing to your tinnitus.
Avoid a too-quiet bedroom. People with tinnitus may find it easier to sleep in a less quiet bedroom, and may benefit from white noise or other sleep-friendly sounds that help mask and minimize their tinnitus. To my patients who are looking to introduce soothing sounds to their sleep environment, I recommend the iHome Zenergy Sleep System, which combines relaxing sounds with aromatherapy and sleep-promoting light therapy.

Ocean waves are designed to create a soothing environment, like that of the serene ocean waves.  Miracle-Ear hearing aids offer four different ocean wave signals to choose from so that you can find the one that you find to be the most relaxing.  Ocean waves are an alternative to static noise and can be found to be a stress-free type of tinnitus treatment.  Your hearing care specialist will work with you to find the signal that offers the most relief.
There is a growing body of evidence suggesting that some tinnitus is a consequence of neuroplastic alterations in the central auditory pathway. These alterations are assumed to result from a disturbed sensory input, caused by hearing loss.[28] Hearing loss could indeed cause a homeostatic response of neurons in the central auditory system, and therefore cause tinnitus.[29]
Even with all of these associated conditions and causes, some people develop tinnitus for no obvious reason. Most of the time, tinnitus isn’t a sign of a serious health problem, although if it’s loud or doesn’t go away, it can cause fatigue, depression, anxiety, and problems with memory and concentration. For some, tinnitus can be a source of real mental and emotional anguish.
TRT depends upon the natural ability of the brain to "habituate" a signal, to filter it out on a subconscious level so that it does not reach conscious perception. Habituation requires no conscious effort. People frequently habituate many auditory sounds -- air conditioners, computer fans, refrigerators, and gentle rain, among them. What they have in common is that they have no importance, so they are not perceived as ''loud.'' Thus, the brain can screen them out.
×