In the advance online edition of Nature on January 12, 2011, the researchers reported that the number of neurons tuned to the high frequency had jumped by 79% compared to control rats. The scientist then tested 2 different tones in a second group of rats but stimulated the vagus nerve only for the higher one. The neurons tuned to the higher tone increased by 70%, while those tuned to the lower one decreased in number. This showed that the tone alone wasn’t enough to initiate the change; it had to be accompanied by VNS.
This tinnitus treatment we developed makes use of software that customizes a music-based therapy for each individual tinnitus sufferer. The software achieves this by incorporating a computational model of the “tinnitus brain.” This model captures changes in the auditory brain which may be causing the tinnitus.5,7 We do this by taking into account the individual’s audiogram and a pitch match of their tinnitus, which generates a tinnitus profile unique to him or her. The software then uses the model to predict how each music track can be altered spectrally to reduce tinnitus for that specific tinnitus profile. Delivering the treatment using headphones that could produce high frequencies (above 10–12 kHz) was an integral part of treatment effectiveness. With such headphones, the treatment could work by taking advantage of the same kind of brain plasticity that may contribute to the person's tinnitus in the first place without being limited by a lack of high-frequency sounds.8 By incorporating the latest tinnitus research into our software, we developed a treatment approach that provides greater promise in treating tinnitus than existing treatments with a one-size-fits-all approach.
Another example of somatic tinnitus is that caused by temperomandibular joint disorder. The temporomandibular joint (TMJ) is where the lower jaw connects to the skull, and is located in front of the ears. Damage to the muscles, ligaments, or cartilage in the TMJ can lead to tinnitus symptoms. The TMJ is adjacent to the auditory system and shares some ligaments and nerve connections with structures in the middle ear.
The sound you hear is actually being generated by the part of your ear known as the cochlea. It’s a very complicated organ with sensory hairs, internal fluid and nerve receptors, that when damaged (or as it naturally degrades as you get older), can cause it to send incorrect input into your brain. In layman’s terms, because it’s no longer working as well as it used to, it thinks there’s a ringing sound in the area and tells your brain to generate that sound in your head. There are other symptoms of tinnitus, but this is the main one.
Tinnitus can be triggered by a variety of different causes, and it varies dramatically from person to person. Some of the causes result in permanent tinnitus that may require treatment, while others result in temporary tinnitus that disappears on its own. Common causes of tinnitus include hearing loss, wax buildup, stress, exposure to loud noises, certain disorders, and certain medications. To learn more about the various causes of tinnitus, check out our page What Causes Tinnitus?
The latest news about tinnitus treatment comes from a UK study showing that Mindfulness Based Cognitive Therapy (MBCT) significantly helps reduce the severity of the disorder. The researchers reported that, among the 75 patients being studied, both relaxation therapy and MBCT worked to alleviate symptoms as well as reducing psychological distress, anxiety and depression related to the disorder. MBCT led to greater reductions in tinnitus severity and the improvements lasted longer.

Can an iPhone app truly relieve tinnitus? Believe it or not, the answer is yes. The ReSound LiNX2 app utilizes a combination of sound therapy and relaxation exercises to reduce the severity of tinnitus. The convenient app can be used in combination with hearing instruments, which are small but strong. This groundbreaking program transforms your iPhone into a remote control for your hearing aid.
Objective tinnitus is very rare. It can be heard by a doctor either using a stethoscope or by listening very closely to your ear. It occurs rarely and may due to involuntary muscle contractions or vascular deformities. The sound is often described as pulsating and may be heard in time with your heartbeat. Objective tinnitus usually has a determinable cause and disappears when treated by surgery or other medical intervention.
While there are many different FDA-approved treatments for tinnitus available, the most important component is finding the right partner (i.e. a Doctor of Audiology), who will work closely with you to help explain your tinnitus and treatment progress over time. In order for the options below to be as successful as possible, the proper support and guidance from an experienced tinnitus specialist is mandatory.

When we hear, sound waves travel through the ear into the cochlea, our hearing organ in the inner ear. The cochlea is lined with thousands of tiny sound-sensing cells called hair cells. These hair cells change the sound waves into electrical signals. The hearing nerve then sends these electrical signals to the hearing part of the brain, which analyses them and recognises them as sound.

It is important to follow the doctor's directions in obtaining further evaluations and tests for your tinnitus. You may need an appointment with an ear, nose, and throat specialist (otolaryngologist) or an audiologist for further testing. It is important to follow up on these recommendations when they are made to confirm that your tinnitus is not caused by another illness.

It is possible that the most common cause of pulsatile tinnitus is sigmoid sinus diverticulum and dehiscence, which can be collectively referred to as sinus wall abnormalities or SSWA. The sigmoid sinus is a blood carrying channel on the side of the brain that receives blood from veins within the brain. The blood eventually exits through the internal jugular vein. Sigmoid sinus diverticulum refers to the formation of small sac-like pouches (diverticula) that protrude through the wall of the sigmoid sinus into the mastoid bone behind the ear. Dehiscence refers to absence of part of the bone that surrounds the sigmoid sinus in the mastoid. It is unknown whether these conditions represent different parts of one disease process or spectrum, or whether they are two distinct conditions. These abnormalities cause pressure, blood flow, and noise changes within the sigmoid sinus, which ultimately results in pulsatile tinnitus. Narrowing of the blood vessel that leads into the sigmoid sinus, known as the transverse sinus, has also been associated with pulsatile tinnitus.

Muscular tinnitus can be caused by several degenerative diseases that affect the head and neck including amyotrophic lateral sclerosis or multiple sclerosis. Myoclonus can also cause muscular tinnitus, especially palatal myoclonus, which is characterized by abnormal contractions of the muscles of the roof of the mouth. Spasms of the stapedial muscle (which attaches to the stapes bone or stirrup), which is the smallest muscle in the body, and tensor tympani muscle, both of which are located in the middle ear, have also been associated with objective tinnitus. Myoclonus or muscle spasms may be caused by an underlying disorder such as a tumor, tissue death caused by lack of oxygen (infarction), or degenerative disease, but it is most commonly a benign and self-limiting problem.
Tinnitus is associated with a high level of emotional stress. Depression, anxiety, and insomnia are not uncommon in people with tinnitus. Cognitive behavioral therapy (CBT) is a type of talk therapy that helps people with tinnitus learn to live with their condition. Rather than reducing the sound itself, CBT teaches you how to accept it. The goal is to improve your quality of life and prevent tinnitus from driving you crazy.
Masking Devices. Similar to the white noise machines listed above, there are now masking devices that can be worn in the ear, just like a hearing aid, that do almost the same thing. They produce low-level white noise that can suppresses your tinnitus symptoms by training your brain to focus on them instead of the ringing in your ears. These are perfect if you can’t always have a white noise machine running near you.
Ototoxic drugs can also cause subjective tinnitus, as they may cause hearing loss, or increase the damage done by exposure to loud noise. Those damages can occur even at doses that are not considered ototoxic.[30] Over 260 medications have been reported to cause tinnitus as a side effect.[31] In many cases, however, no underlying cause could be identified.[2]
The yearlong Dutch trial gave adults with tinnitus a standard package of care or a programme which added cognitive behavioural therapy (CBT) to elements of standard therapy for tinnitus. CBT is a type of therapy that challenges people’s negative assumptions and feelings to help them overcome their worries. Compared with those given usual care, the group receiving specialised treatment reported improved quality of life, and reduced severity and impairment caused by tinnitus.
The researchers next tested whether tinnitus could be reversed in noise-exposed rats. The animals received VNS paired with various tones other than the tinnitus frequency 300 times a day for about 3 weeks. Rats that received the treatment showed behavioral changes indicating that the ringing had stopped. Neural responses in the brain's auditory cortex returned to their normal levels as well, indicating that the tinnitus had disappeared.

Exposure to loud noise. Loud noises, such as those from heavy equipment, chain saws and firearms, are common sources of noise-related hearing loss. Portable music devices, such as MP3 players or iPods, also can cause noise-related hearing loss if played loudly for long periods. Tinnitus caused by short-term exposure, such as attending a loud concert, usually goes away; both short- and long-term exposure to loud sound can cause permanent damage.
×