Hearing loss: Probably the most common cause for tinnitus is hearing loss. As we age, or because of trauma to the ear (through noise, drugs, or chemicals), the portion of the ear that allows us to hear, the cochlea, becomes damaged. Current theories suggest that because the cochlea is no longer sending the normal signals to the brain, the brain becomes confused and essentially develops its own noise to make up for the lack of normal sound signals. This then is interpreted as a sound, tinnitus. This tinnitus can be made worse by anything that makes our hearing worse, such as ear infections or excess wax in the ear.

Many drugs have been studied for treating tinnitus. For some, treatment with low doses of anti-anxiety drugs -- such as Valium or antidepressants such as Elavil -- help reduce tinnitus. The use of a steroid placed into the middle ear along with an anti-anxiety medicine called alprazolam has been shown to be effective for some people. Some small studies have shown that a hormone called misoprostol may be helpful in some cases.

Can an iPhone app truly relieve tinnitus? Believe it or not, the answer is yes. The ReSound LiNX2 app utilizes a combination of sound therapy and relaxation exercises to reduce the severity of tinnitus. The convenient app can be used in combination with hearing instruments, which are small but strong. This groundbreaking program transforms your iPhone into a remote control for your hearing aid.
Supporting the idea that central reorganization is overestimated as "the" cause of tinnitus, a recent study by Wineland et al showed no changes in central connectivity of auditory cortex or other key cortical regions (Wineland et al, 2012). Considering other parts of the brain, Ueyama et al (2013) reported that there was increased fMRI activity in the bilateral rectus gyri, as well as cingulate gyri correlating with distress. Loudness was correlated with values in the thalamus, bilateral hippocampus and left caudate. In other words, the changes in the brain associated with tinnitus seem to be associated with emotional reaction (e.g. cingulate), and input systems (e.g. thalamus). There are a few areas whose role is not so obvious (e.g. caudate). This makes a more sense than the Wineland result, but of course, they were measuring different things. MRI studies related to audition or dizziness must be interpreted with great caution as the magnetic field of the MRI stimulates the inner ear, and because MRI scanners are noisy.

We occasionally recommend neuropsychological testing using a simple screening questionnaire -- depression, anxiety, and OCD (obsessive compulsive disorder) are common in persons with tinnitus. This is not surprising considering how disturbing tinnitus may be to ones life (Holmes and Padgham, 2009). Persons with OCD tend to "obsess" about tinnitus. Treatment of these psychological conditions may be extremely helpful.


Noise exposure. Exposure to loud noises can damage the outer hair cells, which are part of the inner ear. These hair cells do not grow back once they are damaged. Even short exposure to very loud sounds, such as gunfire, can be damaging to the ears and cause permanent hearing loss. Long periods of exposure to moderately loud sounds, such as factory noise or music played through earphones, can result in just as much damage to the inner ear, with permanent hearing loss and tinnitus. Listening to moderately loud sounds for hours at a young age carries a high risk of developing hearing loss and tinnitus later in life.

Medications, Prescription Drugs and Food Additives. Other external irritants that can cause tinnitus are over the counter medications and prescriptions. Even something as simple as aspirin can generate tinnitus. I have experienced this throughout my lifetime. I take aspirin only when I absolutely need it. Certain antibiotics and other prescription drugs are also known to cause tinnitus. Two very common ones that have shown to cause tinnitus are quinine and chloroquine which are in malaria medications. Certain diuretics and cancer medications can also cause tinnitus. Although not a drug, NutraSweet has been linked to tinnitus and a whole host of side effects in clinical studies.


Cochlear Implants. These implants are a treatment option for patients that have a severe hearing loss along with tinnitus. Cochlear implants are designed to bypass any damaged parts of the inner ear and send the electrical signals sound makes directly to the auditory nerve. By bringing in outside noise, these implants can effectively mask your tinnitus, as well as stimulate your neural circuits to change.

This well-designed study found that using CBT alongside elements of standard therapy can help patients with tinnitus of varying severity. However, the differences in outcomes between the two groups were quite small, and this technique can only help manage tinnitus rather than curing it, as some papers implied. Also, the patients in the study were followed for only 12 months, so it is unclear whether this approach can help in the longer term.


The important thing to remember about tinnitus is that the brain’s response to these random electrical signals determines whether or not a person is annoyed by their tinnitus or not. Magnetoencephalography (MEG, for short) studies have been used to study tinnitus and the brain. MEG takes advantage of the fact that every time neurons send each other signals, their electric current creates a tiny magnetic field. MEG allows scientists to detect such changing patterns of activity in the brain 100 times per second. These studies indicated tinnitus affects the entire brain and helps with understanding why certain therapies are more effective than others.
Tinnitus is usually described as a ringing in the ears, but it can also sound like clicking, hissing, roaring, or buzzing. Tinnitus involves perceiving sound when no external noise is present. The sound can be very soft or very loud, and high-pitched or low-pitched. Some people hear it in one ear and others hear it in both. People with severe tinnitus may have problems hearing, working, or sleeping.
In this exercise you are going to imagine yourself in another place – as if you’re actually there. What it looks like, the smells, the sounds… You can make this exercise as long as you want to and you can take your time to visualise a number of different places, such as a forest, a garden or a beach. Here is a short example of how you can do this (remember not to rush through it).
Hearing loss often accompanies tinnitus, so a hearing aid can hit two birds with one stone. In addition to amplifying sound, the device can camouflage the ringing in your ears by boosting other soft sounds in your environment. If you experience hearing loss in addition to your tinnitus, discuss the potential benefits of a hearing aid that may assist with both conditions at the same time.
Microvascular compression may sometimes cause tinnitus. According to Levine (2006) the quality is similar to a "typewriter", and it is fully suppressed by carbamazepine. It seems to us that response to carbamazepine is not a reliable indicator of microvascular compression as this drug stabilizes nerves and lowers serum sodium. Nevertheless, this quality of tinnitus probably justifies a trial of oxcarbamazine (a less toxic version of carbamazepine).
Tinnitus is usually described as a ringing in the ears, but it can also sound like clicking, hissing, roaring, or buzzing. Tinnitus involves perceiving sound when no external noise is present. The sound can be very soft or very loud, and high-pitched or low-pitched. Some people hear it in one ear and others hear it in both. People with severe tinnitus may have problems hearing, working, or sleeping.
Wearable sound generators are small electronic devices that fit in the ear and use a soft, pleasant sound to help mask the tinnitus. Some people want the masking sound to totally cover up their tinnitus, but most prefer a masking level that is just a bit louder than their tinnitus. The masking sound can be a soft “shhhhhhhhhhh,” random tones, or music.

As a hearing healthcare provider, I regularly get asked about a cure for tinnitus. Trust me, if there was one, I would be using it! I have had tinnitus for more than seven years. It makes it hard to sleep, to concentrate, to read a book. Basically, anything that is normally done in quiet became a struggle for me. (To see how tinnitus is affecting you, take our free tinnitus test.)
The most common noise is the sound of rapid or turbulent blood flow in major vessels of the neck. This abnormal blood flow may occur because of a reduced red blood cell count (anemia) or a blockage of the arteries (atherosclerosis) and may be worsened in people with poorly controlled high blood pressure (hypertension). Some small tumors of the middle ear called glomus tumors are rich in blood vessels. Although the tumors are small, they are very near the sound-receiving structures of the ear, and blood flow through them can sometimes be heard (only in one ear). Sometimes, blood vessel malformations that involve abnormal connections between arteries and veins (arteriovenous malformations) develop in the membrane covering the brain (the dura). If these malformations are near the ear, the person sometimes can hear blood flowing through them.
The most common noise is the sound of rapid or turbulent blood flow in major vessels of the neck. This abnormal blood flow may occur because of a reduced red blood cell count (anemia) or a blockage of the arteries (atherosclerosis) and may be worsened in people with poorly controlled high blood pressure (hypertension). Some small tumors of the middle ear called glomus tumors are rich in blood vessels. Although the tumors are small, they are very near the sound-receiving structures of the ear, and blood flow through them can sometimes be heard (only in one ear). Sometimes, blood vessel malformations that involve abnormal connections between arteries and veins (arteriovenous malformations) develop in the membrane covering the brain (the dura). If these malformations are near the ear, the person sometimes can hear blood flowing through them.
Schecklmann et al (2014) suggested that tinnitus is associated with alterations in motor cortex excitability, by pooling several studies, and reported that there are differences in intracortical inhibition, intra-cortical facilitation, and cortical silent period. We doubt that this means that motor cortex excitability causes tinnitus, but rather we suspect that these findings reflect features of brain organization that may predispose certain persons to develop tinnitus over someone else.

Patients with head or neck injury may have particularly loud and disturbing tinnitus (Folmer and Griest, 2003). Tinnitus due to neck injury is the most common type of "somatic tinnitus". Somatic tinnitus means that the tinnitus is coming from something other than the inner ear. Tinnitus from a clear cut inner ear disorder frequently changes loudness or pitch when one simply touches the area around the ear. This is thought to be due to somatic modulation of tinnitus. We have encountered patients who have excellent responses to cervical epidural steroids, and in persons who have both severe tinnitus and significant cervical nerve root compression, we think this is worth trying as treatment.
Somatic tinnitus is caused, worsened, or otherwise related to your body’s own sensory system. Sensory signals coming from various parts of the body are disrupted, causing a spasm that produces tinnitus. Those who have somatic tinnitus usually have it in only one ear. Depending on the root cause your doctor may come up with treatment options to alleviate the symptoms.
Tinnitus (pronounced "tin-it-tus") is an abnormal noise in the ear (note that it is not an "itis" -- which means inflammation). Tinnitus is common -- nearly 36 million Americans have constant tinnitus and more than half of the normal population has intermittent tinnitus.   Another way to summarize this is that about 10-15% of the entire population has some type of constant tinnitus, and about 20% of these people (i.e. about 1% of the population) seek medical attention (Adjamian et al, 2009). Similar statistics are found in England (Dawes et al, 2014) and Korea (Park and Moon, 2014).
Noise exposure. Exposure to loud noises can damage the outer hair cells, which are part of the inner ear. These hair cells do not grow back once they are damaged. Even short exposure to very loud sounds, such as gunfire, can be damaging to the ears and cause permanent hearing loss. Long periods of exposure to moderately loud sounds, such as factory noise or music played through earphones, can result in just as much damage to the inner ear, with permanent hearing loss and tinnitus. Listening to moderately loud sounds for hours at a young age carries a high risk of developing hearing loss and tinnitus later in life.
Demographic variables (age, sex, type of tinnitus) and baseline THI scores of placebo (n = 16) and treatment (n = 11) groups did not significantly differ from one another at the start of the study. At 3 months, participants in the treatment group reported significantly lower scores on the THI when compared to the placebo group (p < .05). The treatment group also showed an 11-point drop in THI scores when comparing baseline and 3 months (p < .05; please see Figure 2). THI scores for the placebo group comparing both time points were non-significant. Past studies have indicated that the minimum change in the THI score to be considered clinically significant is a drop of 6 to 7 points.9 As such, the results of our clinical study suggest that tinnitus and its related symptoms can produce a clinically significant reduction in tinnitus within the first 3 months using the personalized music-based therapy.
Cochlear implants are sometimes used in people who have tinnitus along with severe hearing loss. A cochlear implant bypasses the damaged portion of the inner ear and sends electrical signals that directly stimulate the auditory nerve. The device brings in outside sounds that help mask tinnitus and stimulate change in the neural circuits. Read the NIDCD fact sheet Cochlear Implants for more information.
Tinnitus sufferers most often cite stress as the cause of their condition. While it’s true noises are perceived more acutely when you are tense, there is no scientific basis for saying stress causes tinnitus. But the reverse is definitely true — hearing a constant noise in your ears can certainly cause stress and anxiety, and even lead to depression in some cases.
Additional conditions that can cause pulsatile tinnitus include arterial bruit, abnormal passages or connections between the blood vessels of the outermost layer of the membrane (dura) that covers the brain and spinal cord (dural arteriovenous shunts), or conditions that cause increased pressure within the skull such as idiopathic intracranial hypertension (pseudotumor cerebri). Sigmoid sinus dehiscence may be associated with pseudotumor, but this connection has not been firmly established. It possible that cases of pulsatile tinnitus associated with pseudotumor may be caused by an undiagnosed SSWA. Head trauma, surgery, middle ear conductive hearing loss, and certain tumors can also cause pulsatile tinnitus. Obstructions within in the vessels that connect the heart and brain can also cause pulsatile tinnitus.
The majority of cases of tinnitus are subjective. Objective tinnitus is far less common. However, a diagnosis of objective tinnitus is tied to how hard and well the objective (outside) listener tries to hear the sound in question. Because of this problem, some clinicians now simply refer to tinnitus as either rhythmic or non-rhythmic. Generally, rhythmic tinnitus correlates with objective tinnitus and non-rhythmic tinnitus correlates with subjective tinnitus. Specific forms of tinnitus such as pulsatile tinnitus and muscular tinnitus, which are forms of rhythmic tinnitus, are relatively rare. Pulsatile tinnitus may also be known as pulse-synchronous tinnitus. Properly identifying and distinguishing these less common forms of tinnitus is important because the underlying cause of pulsatile or muscular tinnitus can often be identified and treated.
Age-Related Hearing Loss: Also known as presbycusis, age-related hearing loss results from the cumulative effect of aging on hearing. This permanent, progressive, and sensorineural condition is most pronounced at higher frequencies. It commonly impacts people over the age of 50, as all people begin to lose approximately 0.5% of the inner ear’s hair cells annually starting at age 40.
Individuals were recruited from within and around Hamilton, Ontario via online announcements and audiology clinics. Applicants were initially interviewed via telephone to screen for all inclusion and exclusion criteria for the study in order to determine whether they qualified for on-site screening. The on-site screening, and characterization of participants’ hearing thresholds and tinnitus profiles were conducted in a lab at McMaster University using a computer-based tinnitus assessment tool. Participants were randomly allocated to the treatment or placebo-control group. The assignment of the treatment or placebo music package was completed by a distributor site independent of the research study site. Participants and research personnel were blinded to which music package the participants received.
Tinnitus is the perception of sound when no actual external noise is present. While it is commonly referred to as “ringing in the ears,” tinnitus can manifest many different perceptions of sound, including buzzing, hissing, whistling, swooshing, and clicking. In some rare cases, tinnitus patients report hearing music. Tinnitus can be both an acute (temporary) condition or a chronic (ongoing) health malady.
×