We are all different and you may find you prefer one type of relaxation over another. You may find a class that teaches a type you like. However, you may not be able to get to classes or you may just prefer to do something yourself. Using some simple techniques regularly may help you to improve your quality of life and make a real difference to living with tinnitus. It does take practice to develop good relaxation techniques, and what may help one day, may not do so the next – so don’t give up if at first it does not seem to help.
Some tinnitus sufferers have experienced relief through hearing aids, but studies indicate that such benefits are limited to those with low-frequency tinnitus.8 For those with a tinnitus pitch above 5–6 kHz or those with a hissing or buzzing tinnitus, the benefits of hearing aids are more limited or even nonexistent. This makes sense from a neuroscience point of view, as the hearing aid will typically not be making up for hearing loss at frequencies above 6–8 kHz; this prevents any possible effects on tinnitus types that are caused by changes to higher frequency regions in the auditory system. While hearing aids are essential to improving the lives of the hearing impaired, they are not typically the best option for tinnitus; especially when used alone.
Tinnitus that's continuous, steady, and high-pitched (the most common type) generally indicates a problem in the auditory system and requires hearing tests conducted by an audiologist. Pulsatile tinnitus calls for a medical evaluation, especially if the noise is frequent or constant. MRI or CT imaging may be needed to check for a tumor or blood vessel abnormality.
Hearing loss often accompanies tinnitus, so a hearing aid can hit two birds with one stone. In addition to amplifying sound, the device can camouflage the ringing in your ears by boosting other soft sounds in your environment. If you experience hearing loss in addition to your tinnitus, discuss the potential benefits of a hearing aid that may assist with both conditions at the same time.
No matter what the cause, the condition interrupts the transmission of sound from the ear to the brain. Some of the neural circuits no longer receive signals. Strangely, this does not cause hearing loss. Instead, when neural circuits don’t receive stimulation, they react by chattering together, alone at first and then synchronous with each other. Once the nerve cells become hyperactive and occur at the same time, they simulate a tone the brain “hears” as tinnitus. Analogous to a piano, the broken “keys” create a permanent tone without a pianist playing the keys.
Tinnitus Retraining Therapy. Tinnitus Retraining Therapy (TRT) combines a wearable device that is individually programmed to mask the specific tonal frequency of that person’s tinnitus, with psychological therapy that teaches a patient to ignore the sounds his tinnitus is creating. I consider it the best of all of the above noise suppression techniques, as it is individually tailored for each person and involves support from a trained psychological therapist. It is also the most expensive and time consuming, but in my medical opinion, the most beneficial of all the noise suppression techniques listed above.
Identifying And Treating Any Vascular Issues. There is a very small chance that your tinnitus is being caused by an underlying blood vessel condition known as pulsatile tinnitus. Sometimes this condition is caused by pregnancy or strenuous exercise and other times it’s the result of a single blood vessel or a group of blood vessels experiencing increased blood flow that the rest of the body is not experiencing. On rare occurrences, the cause is a benign tumor known as an acoustic neuroma (AKA vestibular schwannoma). These tumors, although very rare, can cause the development of abnormal blood vessels which can result in pulsatile tinnitus. Treatment options include medication and surgery.
The treatment involves implanting a small electrode into a person’s neck near the vagus nerve. The patient then listens to specific tones that are paired with small electric pulses sent to the vagus nerve. This vagus nerve stimulation, coupled with the sound-based stimulation of the auditory cortex, can “turn down” the patient’s tinnitus. Though, Kilgard adds, “It’s not 100 percent yet.”
MRI (or magnetic resonance imaging) scan is a radiology technique which uses magnetism, radio waves, and a computer to produce images of body structures. MRI scanning is painless and does not involve X-ray radiation. Patients with heart pacemakers, metal implants, or metal chips or clips in or around the eyes cannot be scanned with MRI because of the effect of the magnet.
Ocean waves are designed to create a soothing environment, like that of the serene ocean waves. Miracle-Ear hearing aids offer four different ocean wave signals to choose from so that you can find the one that you find to be the most relaxing. Ocean waves are an alternative to static noise and can be found to be a stress-free type of tinnitus treatment. Your hearing care specialist will work with you to find the signal that offers the most relief.
Microvascular compression may sometimes cause tinnitus. According to Levine (2006) the quality is similar to a "typewriter", and it is fully suppressed by carbamazepine. It seems to us that response to carbamazepine is not a reliable indicator of microvascular compression as this drug stabilizes nerves and lowers serum sodium. Nevertheless, this quality of tinnitus probably justifies a trial of oxcarbamazine (a less toxic version of carbamazepine).
Can an iPhone app truly relieve tinnitus? Believe it or not, the answer is yes. The ReSound LiNX2 app utilizes a combination of sound therapy and relaxation exercises to reduce the severity of tinnitus. The convenient app can be used in combination with hearing instruments, which are small but strong. This groundbreaking program transforms your iPhone into a remote control for your hearing aid.
Tinnitus is commonly described as a ringing in the ears, but it also can sound like roaring, clicking, hissing, or buzzing. It may be soft or loud, high pitched or low pitched. You might hear it in either one or both ears. Roughly 10 percent of the adult population of the United States has experienced tinnitus lasting at least five minutes in the past year. This amounts to nearly 25 million Americans.
Muscular tinnitus can be caused by several degenerative diseases that affect the head and neck including amyotrophic lateral sclerosis or multiple sclerosis. Myoclonus can also cause muscular tinnitus, especially palatal myoclonus, which is characterized by abnormal contractions of the muscles of the roof of the mouth. Spasms of the stapedial muscle (which attaches to the stapes bone or stirrup), which is the smallest muscle in the body, and tensor tympani muscle, both of which are located in the middle ear, have also been associated with objective tinnitus. Myoclonus or muscle spasms may be caused by an underlying disorder such as a tumor, tissue death caused by lack of oxygen (infarction), or degenerative disease, but it is most commonly a benign and self-limiting problem.
For many, tinnitus symptoms come on gradually and eventually go away as the brain and ears adjust. However, for others tinnitus can last for years and cause various complications. A high percentage of people with tinnitus that’s persistent and untreatable go on to also develop anxiety or depression as a result. What types of things can you do to deal with and lower tinnitus symptoms? Tinnitus treatment includes avoiding excessively loud sources of noise pollution, using certain hearing aids, preventing ear infections and avoiding drug use.
Limit use of earplugs. Earplugs are important to use to protect your hearing when you’re likely to be exposed to loud noises. (Remember, exposure to loud sounds, and noise-induced hearing loss, are common causes of tinnitus, and may make tinnitus worse if you already have the condition.) But otherwise, people with tinnitus are advised not to wear earplugs, including for sleep. Earplugs reduce your ability to hear external noise and can make tinnitus more noticeable.
It is very well accepted that tinnitus often is "centralized" -- while it is usually initiated with an inner ear event, persistent tinnitus is associated with changes in central auditory processing (Adjamian et al, 2009). Sometimes this idea is used to put forth a "therapeutic nihilism" -- suggesting that fixing the "cause" -- i.e. inner ear disorder -- will not make the tinnitus go away. This to us seems overly simplistic -- while it is clear that the central nervous system participates in perception of sounds, and thus must be a participant in the "tinnitus" process, we think that it is implausible that in most cases that there is not an underlying "driver" for persistent tinnitus.
Objective tinnitus is very rare. It can be heard by a doctor either using a stethoscope or by listening very closely to your ear. It occurs rarely and may due to involuntary muscle contractions or vascular deformities. The sound is often described as pulsating and may be heard in time with your heartbeat. Objective tinnitus usually has a determinable cause and disappears when treated by surgery or other medical intervention.
Earwax (ear wax) is a natural substance secreted by special glands in the skin on the outer part of the ear canal. It repels water, and traps dust and sand particles. Usually a small amount of wax accumulates, dries up, and then falls out of the ear canal carrying with it unwanted particles. Under ideal circumstances, you should never have to clean your ear canals. The absence of ear wax may result in dry, itchy ears, and even infection. Ear wax may accumulate in the ear for a variety of reasons including; narrowing of the ear canal, production of less ear wax due to aging, or an overproduction of ear wax in response to trauma or blockage within the ear canal.
Tinnitus retraining therapy (TRT). This technique is based on the assumption that tinnitus results from abnormal neuronal activity (see "What's going on?"). The aim is to habituate the auditory system to the tinnitus signals, making them less noticeable or less bothersome. The main components of TRT are individual counseling (to explain the auditory system, how tinnitus develops, and how TRT can help) and sound therapy. A device is inserted in the ear to generate low-level noise and environmental sounds that match the pitch, volume, and quality of the patient's tinnitus. Depending on the severity of the symptoms, treatment may last one to two years.
A number of vital tasks carried out during sleep help maintain good health and enable people to function at their best. Sleep needs vary from individual to individual and change throughout your life. The National Institutes of Health recommend about 7-9 hours of sleep each night for older, school-aged children, teens, and most average adults; 10-12 for preschool-aged children; and 16-18 hours for newborns. There are two stages of sleep; 1) REM sleep (rapid-eye movement), and 2) NREM sleep (non-rapid-eye movement). The side effects of lack of sleep or insomnia include:
Tinnitus remains a symptom that affects the lives of millions of people. Research is directed not only at its treatment, but also at understanding why it occurs. Research by doctors at the University at Buffalo, The State University of New York, Dalhousie University (Canada), and Southeast China University have published research using electrophysiology and functional MRI to better understand what parts of the brain are involved in hearing and the production of tinnitus. Their research has found that much larger areas of the brain are involved with the process of hearing than previously believed, which may help direct future diagnostic and therapeutic options.
Many of the press headlines mentioned that listening to the sound of the sea could help tinnitus, with the Metro claiming this could cure the condition. However, sound therapies that try to neutralise tinnitus using soothing sounds, such as waves or birdsong, are not new, but are part of standard treatments for this condition. Also, the report in the Lancet did not state what kind of sounds were used as therapy. Sound therapy was not the only treatment approach used, but was given as part of a specialised treatment programme delivered by expert health professionals.
Sound-masking devices provide a pleasant or benign external noise that partially drowns out the internal sound of tinnitus. The traditional sound-masking device is a tabletop sound machine, but there are also small electronic devices that fit in the ear. These devices can play white noise, pink noise, nature noises, music, or other ambient sounds. Most people prefer a level of external sound that is just slightly louder than their tinnitus, but others prefer a masking sound that completely drowns out the ringing.
Demographic variables (age, sex, type of tinnitus) and baseline THI scores of placebo (n = 16) and treatment (n = 11) groups did not significantly differ from one another at the start of the study. At 3 months, participants in the treatment group reported significantly lower scores on the THI when compared to the placebo group (p < .05). The treatment group also showed an 11-point drop in THI scores when comparing baseline and 3 months (p < .05; please see Figure 2). THI scores for the placebo group comparing both time points were non-significant. Past studies have indicated that the minimum change in the THI score to be considered clinically significant is a drop of 6 to 7 points.9 As such, the results of our clinical study suggest that tinnitus and its related symptoms can produce a clinically significant reduction in tinnitus within the first 3 months using the personalized music-based therapy.
Sound therapies are one method that has previously been shown to reduce the severity of tinnitus. While not all sound therapies have gone through rigorous clinical testing, they have far greater traction and adoption in the tinnitus community. There are two types of sound therapy approaches: (1) maskers that are intended to block out the tinnitus and have the patient learn to ignore their tinnitus, and (2) sound therapies that utilize the same brain plasticity that is thought to be causing the tinnitus for the purpose of reducing it. Both approaches can be delivered via electronic devices that can produce sound. There has been an increase in tinnitus maskers that are built into hearing aids. These built-in maskers generate different sounds including white noise and random tones. Unfortunately, due to their design, hearing aids are still limited to providing masking at frequencies below 8 kHz.
Demographic variables (age, sex, type of tinnitus) and baseline THI scores of placebo (n = 16) and treatment (n = 11) groups did not significantly differ from one another at the start of the study. At 3 months, participants in the treatment group reported significantly lower scores on the THI when compared to the placebo group (p < .05). The treatment group also showed an 11-point drop in THI scores when comparing baseline and 3 months (p < .05; please see Figure 2). THI scores for the placebo group comparing both time points were non-significant. Past studies have indicated that the minimum change in the THI score to be considered clinically significant is a drop of 6 to 7 points.9 As such, the results of our clinical study suggest that tinnitus and its related symptoms can produce a clinically significant reduction in tinnitus within the first 3 months using the personalized music-based therapy.
If your mind is occupied with something absorbing, it is easier to forget about the tinnitus. Work, leisure pursuits and other interests can all help to provide a worthwhile focus. If you don't have a hobby, now might be the time to start something, many people say that painting or writing helps. Bear in mind however, that excessive activity may produce stress, so take time for relaxing activities and social interaction where possible.
Tinnitus is not a disease — it’s a symptom. It’s a sign that something is wrong with your auditory system, which includes your ear, the auditory nerve that connects the inner ear to the brain, and the parts of the brain that process sound. There are a variety of different conditions that can cause tinnitus. One of the most common is noise-induced hearing loss.