Temporomandibular joint (TMJ) syndrome is a disorder that causes symptoms like pain, clicking, and popping of the jaw. TMJ is caused by injury to the temporomandibular joint. Stress, poor posture, jaw trauma, genetic predisposition, and inflammatory disorders are risk factors for the condition. A variety of self-care measures (application of ice, use of over-the-counter pain medication, massage, relaxation techniques) and medical treatment options (dental splint, Botox, prescription medications, surgery) are available to manage TMJ. The prognosis of TMJ is good with proper treatment.
Serenade by SoundCure is based on S-tones. The MP3 player-like device was developed through research from the University of California, Irvine, where it was proven that the temporal-patterned sounds produced by SoundCure can suppress a patient’s tinnitus. Instead of drowning out tinnitus with another sound played at a louder volume, it actively reduces the condition. The therapy is custom-designed by a patient’s audiologist following testing.
Tinnitus is a symptom, not a disease. Most cases are due to damage to the microscopic endings of the sensory nerve in the inner ear, commonly from exposure to loud noise (as from amplified music or gunfire). Other causes include allergy, high or low blood pressure, a tumor, diabetes, thyroid dysfunction, and head or neck injury. In addition, some drugs, including aspirin and other anti-inflammatories, antibiotics, sedatives, and antidepressants can also cause tinnitus. If so, changing drugs or lowering the dosage usually helps.
Cochlear implants are sometimes used in people who have tinnitus along with severe hearing loss. A cochlear implant bypasses the damaged portion of the inner ear and sends electrical signals that directly stimulate the auditory nerve. The device brings in outside sounds that help mask tinnitus and stimulate change in the neural circuits. Read the NIDCD fact sheet Cochlear Implants for more information.
Tinnitus is when people think they hear something in their ears but there is actually no sound. People with tinnitus actually do "hear" noises that range from a whistle to a crackling noise to a roar. It can happen only occasionally, can occur for a period of days then take a break before recurring again, or it can be constant. The sound can vary in pitch from quiet to unbearably loud, or it can stay the same.
Various techniques can help make tinnitus tolerable, although the ability to tolerate it varies from person to person. Many people find that background sound helps mask the tinnitus and helps them fall asleep. Some people play background music. Other people use a tinnitus masker, which is a device worn like a hearing aid that produces a constant level of neutral sounds. For the profoundly deaf, an implant in the cochlea (the organ of hearing) may reduce tinnitus but is only done for people with severe to profound hearing loss in both ears. If these standard techniques are not helpful, people may want to seek treatment in clinics that specialize in the treatment of tinnitus.
To keep the brain activated and aware, Kilgard’s therapy involves stimulating the vagus nerve, which is actually a pair of nerves that runs inside the neck and into the brain. “All the stuff you brains learns about your body — it all comes in through the vagus nerve,” he says. “We trick the brain into thinking it’s learning something important by stimulating this nerve in the neck.”
Tinnitus sufferers have tried many alternative therapies but often to no avail. Some have heard of success stories involving the use of certain vitamins, minerals, herbal preparations, or even a change in diet, but often did not experience personal success in treating tinnitus using such options. Unfortunately, no studies to date have been able to associate such treatments to any real benefits. While much of the existing research have been dedicated to helping us understand tinnitus and its etiological underpinnings, there are currently very few treatments that are clinically validated. Of the few that conducted clinical studies to evaluate the effectiveness, most did not use rigorous clinical methods such as controlling for placebo effects or double-blinding to ensure the integrity of the data and to eliminate any sources of bias. Tinnitus sufferers who access such treatments often do not experience relief from their tinnitus. As a result, tinnitus sufferers often experience confusion, frustration, a loss of hope, and skepticism after having invested time and money on available treatment options.
Every person living with tinnitus hears a unique sound. The sound can be a low or high frequency, and its volume and pitch may change over time, with the severity varying from person to person. Those with acute tinnitus may struggle to sleep, focus at work, or communicate with others. In such cases, treatment plays a crucial role in helping an individual regain control of his or her life.
The content of the website and databases of the National Organization for Rare Disorders (NORD) is copyrighted and may not be reproduced, copied, downloaded or disseminated, in any way, for any commercial or public purpose, without prior written authorization and approval from NORD. Individuals may print one hard copy of an individual disease for personal use, provided that content is unmodified and includes NORD’s copyright.
^ Langguth B, Goodey R, Azevedo A, et al. (2007). "Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006". Tinnitus: Pathophysiology and Treatment. Progress in Brain Research. 166. pp. 525–36. doi:10.1016/S0079-6123(07)66050-6. ISBN 978-0444531674. PMC 4283806. PMID 17956816.
The important thing to remember about tinnitus is that the brain’s response to these random electrical signals determines whether or not a person is annoyed by their tinnitus or not. Magnetoencephalography (MEG, for short) studies have been used to study tinnitus and the brain. MEG takes advantage of the fact that every time neurons send each other signals, their electric current creates a tiny magnetic field. MEG allows scientists to detect such changing patterns of activity in the brain 100 times per second. These studies indicated tinnitus affects the entire brain and helps with understanding why certain therapies are more effective than others.
Tinnitus also could be the result of neural circuits thrown out of balance when damage in the inner ear changes signaling activity in the auditory cortex, the part of the brain that processes sound. Or it could be the result of abnormal interactions between neural circuits. The neural circuits involved in hearing aren’t solely dedicated to processing sound. They also communicate with other parts of the brain, such as the limbic region, which regulates mood and emotion.
As with the first exercise, make sure you’re comfortable and unlikely to be disturbed. Now imagine yourself leaving this room. You walk out of the door and follow a path… at the end of the path is another door. You open that door and inside you see a beautiful garden – you can hear birds singing, children playing somewhere in the distance. You feel a cool breeze on your skin and hear the rustle of leaves through the trees. The colours of the leaves, green, gold, red, all dance across a beautiful pond in the middle… as you walk over to the pond, you feel the soft grass under your bare feet… you dip your toes into the calm, clear pond and stop for a moment – just experiencing the beauty of everything around you…

Technology and portable music devices also contribute to noise pollution, especially in younger people. Keep the volume of your phone, MP3 players or iPod on the lower end when listening to headphones, and don’t play very loud noises for long durations of time. To aid in tinnitus treatment, look out for changes in your ability to hear if you’re frequently exposed to loud noises, limit use of headphones or consider wearing earplugs.

But one of the awesome powers of the human brain is its adaptability. “It can learn and reorganize itself every time you practice something new,” Kilgard says. His research, including a study published in February 2014 in the journal Neuromodulation, has shown this adaptability may be key to helping the brain “turn down” the hyperactivity that can lead to tinnitus, he says. (4)


Unfortunately that means tinnitus is a very complicated condition that involves several systems of the body. The good news, though, is that as doctors and researchers have developed a better understanding of the mechanisms behind tinnitus, they’ve also been able to develop new and promising treatments that target the brain rather than the ear — and have more of a chance of actually reversing the problem.
Exposure to Loud Noise: Exposure to loud or excessive noise can damage or destroy hair cells (cilia) in the inner ear. Because the hair cells cannot be renewed or replaced, this can lead to permanent hearing loss and/or tinnitus. Continued exposure can worsen these conditions, so people who work in loud environments should always wear ear protection. This includes musicians, air traffic controllers, construction workers, military personnel, and first responders. In addition, consider lowering the volume on your iPod and wearing earplugs at loud concerts.
For some people, the jarring motion of brisk walking can produce what is called a seismic effect which causes movement in the small bones or contractions in the muscles of the middle ear space. You can experiment to find out if this is the cause by walking slowly and smoothly to see if the clicking is present. Then, try walking quickly and with a lot of motion to see if you hear the clicking. You can also test for the seismic effect by moving your head up and down quickly. 
×